Bhrawy, A. H.; Baleanu, D. A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients. (English) Zbl 1292.65109 Rep. Math. Phys. 72, No. 2, 219-233 (2013). Summary: An efficient Legendre-Gauss-Lobatto collocation method is applied to solve the space-fractional advection diffusion equation with nonhomogeneous initial-boundary conditions. The Legendre-Gauss-Lobatto points are used as collocation nodes for spatial fractional derivatives as well as the Caputo fractional derivative. This approach is reducing the problem to the solution of a system of ordinary differential equations in time which can be solved by using any standard numerical techniques. The proposed numerical solutions when compared with the exact solutions reveal that the obtained solution produces highly accurate results. The results show that the proposed method has high accuracy and is efficient for solving the space-fractional advection diffusion equation. Cited in 50 Documents MSC: 65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs 35R11 Fractional partial differential equations 35K57 Reaction-diffusion equations 65M20 Method of lines for initial value and initial-boundary value problems involving PDEs 65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations Keywords:space-fractional advection diffusion equation; spectral method; Legendre-Gauss-Lobatto quadrature; implicit Runge-Kutta method; numerical examples; collocation PDF BibTeX XML Cite \textit{A. H. Bhrawy} and \textit{D. Baleanu}, Rep. Math. Phys. 72, No. 2, 219--233 (2013; Zbl 1292.65109) Full Text: DOI References: [1] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional calculus models and numerical methods, (Series on Complexity, Nonlinearity and Chaos (2012), World Scientific: World Scientific Singapore) · Zbl 1248.26011 [2] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, in:, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer New York) · Zbl 0917.73004 [3] Spasic, A. M.; Lazarevic, M. P., J. Colloid Interface Sci., 282, 223 (2005) [4] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., (Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier San Diego) · Zbl 1092.45003 [5] Bhrawy, A. H.; Alghamdi, M. A., Bound. Value. Prob., 2012, 62 (2012) [6] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., Appl. Math. Modell., 35, 5662 (2011) [7] Li, X.; Xu, C., SIAM J. Numer. Anal., 45, 2108 (2009) [8] Saadatmandi, A.; Dehghan, M., Comput. Math. Appl., 62, 1135 (2011) [9] Saadatmandi, A.; Dehghan, M.; Azizi, M. R., Commun. Nonlinear Sci. Numer. Simulat., 17, 4125 (2012) [10] (Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific: World Scientific Singapore) · Zbl 0998.26002 [11] Celik, C.; Duman, M., J. Comput. Phys., 231, 1743 (2012) [12] Chen, J.; Liu, F.; Turner, I.; Anh, V., ANZIAM J., 50, 45 (2008) [13] Choi, H. W.; Chung, S. K.; Lee, Y. J., Bull. Korean Math. Soc., 47, 1225 (2010) [14] Liu, F.; Zhuang, P.; Burrage, K., Comput. Math. Appl., 64, 2990 (2012) [15] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., (Spectral Methods: Fundamentals in Single Domains (2006), Springer: Springer New York) · Zbl 1093.76002 [16] Guo, B.-Y.; Yan, J.-P., Appl. Numer. Math., 59, 1386 (2009) [17] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., Appl. Math. Model., 36, 4931 (2012) [18] Bhrawy, A. H.; Alofi, A. S., Commun. Nonlinear. Sci. Numer. Simulat., 17, 62 (2012) · Zbl 1244.65099 [19] Doha, E. H.; Bhrawy, A. H.; Hafez, R. M., Commun. Nonlinear Sci. Numer. Simulat., 17, 3802 (2012) [20] Doha, E. H.; Bhrawy, A. H., Appl. Numer. Math., 58, 1224 (2008) [21] Zheng, Y.; Li, C.; Zhaoa, Z., Comput. Math. Appl., 59, 1718 (2010) [22] Su, L.; Wang, W.; Xu, Q., Appl. Math. Comput., 216, 3329 (2010) [23] Fix, G. J.; Roop, J. P., Comput. Math. Appl., 48, 1017 (2004) [24] Sousa, E., Comput. Math. Appl., 62, 938 (2011) [25] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H.-P., J. Comput. Phys., 213, 205 (2006) [26] Abdel-Rehima, E. A.; Gorenflo, R., J. Comput. Appl. Math., 222, 274 (2008) [27] Zhang, H.; Liu, F.; Anh, V., Appl. Math. Comput., 217, 2534 (2010) [28] Guo, B.-Y.; Wang, L.-L., J. Appr. Theor., 128, 1-41 (2004) [29] Bhrawy, A. H.; Alofi, A. S.; Ezz-Eldien, S. S., Appl. Math. Lett., 24, 2146 (2011) [30] Sousa, E., Comput. Math. Appl., 64, 3141 (2012) [31] Ray, S. S.; Chaudhuri, K. S.; Bera, R. K., Appl. Math. Comput., 196, 294 (2008) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.