×

Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise. (English) Zbl 1385.37082

Summary: Unique existence of solutions to porous media equations driven by continuous linear multiplicative space-time rough signals is proven for initial data in \(L^{1}(\mathcal{O})\) on bounded domains \(\mathcal{O} \). The generation of a continuous, order-preserving random dynamical system on \(L^{1}(\mathcal{O})\) and the existence of a random attractor for stochastic porous media equations perturbed by linear multiplicative noise in space and time is obtained. The random attractor is shown to be compact and attracting in \(L^{\infty}(\mathcal{O})\) norm. Uniform \(L^{\infty}\) bounds and uniform space-time continuity of the solutions is shown. General noise including fractional Brownian motion for all Hurst parameters is treated and a pathwise Wong-Zakai result for driving noise given by a continuous semimartingale is obtained. For fast diffusion equations driven by continuous linear multiplicative space-time rough signals, existence of solutions is proven for initial data in \(L^{m+1}(\mathcal{O})\).

MSC:

37L55 Infinite-dimensional random dynamical systems; stochastic equations
35R60 PDEs with randomness, stochastic partial differential equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
76S05 Flows in porous media; filtration; seepage
37L30 Attractors and their dimensions, Lyapunov exponents for infinite-dimensional dissipative dynamical systems
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Anderson, J. R. (1991). Local existence and uniqueness of solutions of degenerate parabolic equations. Comm. Partial Differential Equations 16 105-143. · Zbl 0738.35033
[2] Arnold, L. (1998). Random Dynamical Systems . Springer, Berlin. · Zbl 0906.34001
[3] Arnold, L. and Scheutzow, M. (1995). Perfect cocycles through stochastic differential equations. Probab. Theory Related Fields 101 65-88. · Zbl 0821.60061
[4] Barbu, V., Da Prato, G. and Röckner, M. (2008). Existence and uniqueness of nonnegative solutions to the stochastic porous media equation. Indiana Univ. Math. J. 57 187-211. · Zbl 1137.76059
[5] Barbu, V., Da Prato, G. and Röckner, M. (2008). Some results on stochastic porous media equations. Boll. Unione Mat. Ital. (9) 1 1-15. · Zbl 1205.60109
[6] Barbu, V., Da Prato, G. and Röckner, M. (2009). Existence of strong solutions for stochastic porous media equation under general monotonicity conditions. Ann. Probab. 37 428-452. · Zbl 1162.76054
[7] Barbu, V., Da Prato, G. and Röckner, M. (2009). Finite time extinction for solutions to fast diffusion stochastic porous media equations. C. R. Math. Acad. Sci. Paris 347 81-84. · Zbl 1156.60040
[8] Barbu, V., Da Prato, G. and Röckner, M. (2009). Stochastic porous media equations and self-organized criticality. Comm. Math. Phys. 285 901-923. · Zbl 1176.35182
[9] Barbu, V. and Röckner, M. (2011). On a random scaled porous media equation. J. Differential Equations 251 2494-2514. · Zbl 1238.60070
[10] Bénilan, P., Crandall, M. G. and Pierre, M. (1984). Solutions of the porous medium equation in \(\mathbf{R}^{N}\) under optimal conditions on initial values. Indiana Univ. Math. J. 33 51-87. · Zbl 0552.35045
[11] Beyn, W.-J., Gess, B., Lescot, P. and Röckner, M. (2011). The global random attractor for a class of stochastic porous media equations. Comm. Partial Differential Equations 36 446-469. · Zbl 1284.60124
[12] Brzeźniak, Z. and Li, Y. (2006). Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains. Trans. Amer. Math. Soc. 358 5587-5629 (electronic). · Zbl 1113.60062
[13] Buckdahn, R. and Ma, J. (2001). Stochastic viscosity solutions for nonlinear stochastic partial differential equations. I. Stochastic Process. Appl. 93 181-204. · Zbl 1053.60065
[14] Buckdahn, R. and Ma, J. (2001). Stochastic viscosity solutions for nonlinear stochastic partial differential equations. II. Stochastic Process. Appl. 93 205-228. · Zbl 1053.60066
[15] Caruana, M., Friz, P. K. and Oberhauser, H. (2011). A (rough) pathwise approach to a class of non-linear stochastic partial differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 27-46. · Zbl 1219.60061
[16] Chueshov, I. (2002). Monotone Random Systems Theory and Applications. Lecture Notes in Math. 1779 . Springer, Berlin. · Zbl 1023.37030
[17] Crauel, H., Debussche, A. and Flandoli, F. (1997). Random attractors. J. Dynam. Differential Equations 9 307-341. · Zbl 0884.58064
[18] Crauel, H. and Flandoli, F. (1994). Attractors for random dynamical systems. Probab. Theory Related Fields 100 365-393. · Zbl 0819.58023
[19] Da Prato, G. and Röckner, M. (2004). Weak solutions to stochastic porous media equations. J. Evol. Equ. 4 249-271. · Zbl 1049.60092
[20] Da Prato, G., Röckner, M., Rozovskii, B. L. and Wang, F.-Y. (2006). Strong solutions of stochastic generalized porous media equations: Existence, uniqueness, and ergodicity. Comm. Partial Differential Equations 31 277-291. · Zbl 1158.60356
[21] Diaz, J. I. and Kersner, R. (1987). On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium. J. Differential Equations 69 368-403. · Zbl 0634.35042
[22] DiBenedetto, E. (1983). Continuity of weak solutions to a general porous medium equation. Indiana Univ. Math. J. 32 83-118. · Zbl 0526.35042
[23] Flandoli, F. and Lisei, H. (2004). Stationary conjugation of flows for parabolic SPDEs with multiplicative noise and some applications. Stoch. Anal. Appl. 22 1385-1420. · Zbl 1063.60089
[24] Friz, P. K. and Victoir, N. B. (2010). Multidimensional Stochastic Processes as Rough Paths : Theory and Applications. Cambridge Studies in Advanced Mathematics 120 . Cambridge Univ. Press, Cambridge. · Zbl 1193.60053
[25] Gess, B. (2012). Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise. C. R. Math. Acad. Sci. Paris 350 299-302. · Zbl 1242.35056
[26] Gess, B. (2012). Strong solutions for stochastic partial differential equations of gradient type. J. Funct. Anal. 263 2355-2383. · Zbl 1267.60072
[27] Gess, B. (2013). Random attractors for degenerate stochastic partial differential equations. J. Dynam. Differential Equations 25 121-157. · Zbl 1264.37047
[28] Gess, B., Liu, W. and Röckner, M. (2011). Random attractors for a class of stochastic partial differential equations driven by general additive noise. J. Differential Equations 251 1225-1253. · Zbl 1228.35062
[29] Gilding, B. H. (1989). Improved theory for a nonlinear degenerate parabolic equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 165-224. · Zbl 0702.35140
[30] Gubinelli, M. and Tindel, S. (2010). Rough evolution equations. Ann. Probab. 38 1-75. · Zbl 1193.60070
[31] Hairer, M. (2011). Rough stochastic PDEs. Comm. Pure Appl. Math. 64 1547-1585. · Zbl 1229.60079
[32] Kim, J. U. (2006). On the stochastic porous medium equation. J. Differential Equations 220 163-194. · Zbl 1099.35187
[33] Ladyženskaja, O. A., Solonnikov, V. A. and Ural’ceva, N. N. (1968). Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs 23 . Amer. Math. Soc., Providence, RI. · Zbl 0174.15403
[34] Li, Y. and Guo, B. (2008). Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations. J. Differential Equations 245 1775-1800. · Zbl 1188.37076
[35] Lieberman, G. M. (1996). Second Order Parabolic Differential Equations . World Scientific, River Edge, NJ. · Zbl 0884.35001
[36] Lions, P.-L. and Souganidis, P. E. (2000). Fully nonlinear stochastic pde with semilinear stochastic dependence. C. R. Acad. Sci. Paris Sér. I Math. 331 617-624. · Zbl 0966.60058
[37] Lions, P.-L. and Souganidis, P. E. (2002). Viscosity solutions of fully nonlinear stochastic partial differential equations. Sūrikaisekikenkyūsho Kōkyūroku 1287 58-65.
[38] Mohammed, S.-E. A., Zhang, T. and Zhao, H. (2008). The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations. Mem. Amer. Math. Soc. 196 vi+105. · Zbl 1169.60014
[39] Protter, P. E. (2004). Stochastic Integration and Differential Equations : Stochastic Modelling and Applied Probability , 2nd ed. Applications of Mathematics ( New York ) 21 . Springer, Berlin. · Zbl 1041.60005
[40] Ren, J., Röckner, M. and Wang, F.-Y. (2007). Stochastic generalized porous media and fast diffusion equations. J. Differential Equations 238 118-152. · Zbl 1129.60059
[41] Röckner, M. and Wang, F.-Y. (2008). Non-monotone stochastic generalized porous media equations. J. Differential Equations 245 3898-3935. · Zbl 1151.76032
[42] Sacks, P. E. (1983). The initial and boundary value problem for a class of degenerate parabolic equations. Comm. Partial Differential Equations 8 693-733. · Zbl 0529.35038
[43] Schmalfuss, B. (1992). Backward cocycle and attractors of stochastic differential equations. International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior (V. Reitmann, T. Riedrich and N. Koksch, eds.) 185-192. Technische Universität Dresden.
[44] van Neerven, J. and Veraar, M. C. (2006). On the stochastic Fubini theorem in infinite dimensions. In Stochastic Partial Differential Equations and Applications-VII. Lect. Notes Pure Appl. Math. 245 323-336. Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1113.60056
[45] Vázquez, J. L. (2007). The Porous Medium Equation : Mathematical Theory . Clarendon, Oxford. · Zbl 1107.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.