zbMATH — the first resource for mathematics

The gravitational wave strain in the characteristic formalism of numerical relativity. (English) Zbl 1288.83015
Summary: The extraction of the gravitational wave signal, within the context of a characteristic numerical evolution is revisited. A formula for the gravitational wave strain is developed and tested, and is made publicly available as part of the PITT code within the Einstein Toolkit. Using the new strain formula, we show that artificial non-linear drifts inherent in time integrated waveforms can be reduced for the case of a binary black hole merger configuration. For the test case of a rapidly spinning stellar core collapse model, however, we find that the drift must have different roots.

83C35 Gravitational waves
83-08 Computational methods for problems pertaining to relativity and gravitational theory
85A15 Galactic and stellar structure
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C10 Equations of motion in general relativity and gravitational theory
83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
Full Text: DOI
[1] Winicour, J.: Living Rev. Relativ. 8, 10 (2005). gr-qc/0508097
[2] Reisswig, C., Bishop, N.T., Pollney, D., Szilagyi, B.: Phys. Rev. Lett. 103, 221101 (2009). 0907.2637
[3] Reisswig, C; Bishop, NT; Pollney, D; Szilagyi, B, No article title, Class. Quantum Gravity, 27, 075014, (2010) · Zbl 1187.83026
[4] Babiuc, M; Winicour, J; Zlochower, Y, No article title, Class. Quantum Gravity, 28, 134006, (2011) · Zbl 1219.83032
[5] Babiuc, MC; Szilágyi, B; Winicour, J; Zlochower, Y, No article title, Phys. Rev. D, 84, 044057, (2011)
[6] Reisswig, C., Ott, C., Abdikamalov, E., Haas, R., Moesta, P., et al. (2013). 1304.7787
[7] Ott, CD; Reisswig, C; Schnetter, E; O’Connor, E; Sperhake, U; Loeffler, F; Diener, P; Abdikamalov, E; Hawke, I; Burrows, A, No article title, Phys. Rev. Lett., 106, 161103, (2011)
[8] Pollney, D; Reisswig, C, No article title, Astrophys. J., 732, l13, (2011)
[9] Hinder, I., et al.: The NRAR Collaboration, Perimeter Institute for Theoretical Physics (2013). 1307.5307
[10] Bondi, H; Burg, MGJ; Metzner, AWK, No article title, Proc. R. Soc. Lond., A269, 21, (1962) · Zbl 0106.41903
[11] Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M., Winicour, J.: Phys. Rev. D 56, 6298 (1997). gr-qc/9708065
[12] Babiuc, M.C., Bishop, N.T., Szilágyi, B., Winicour, J.: Phys. Rev. D 79, 084011 (2009). gr-qc/0808.0861
[13] Bishop, N; Deshingkar, S, No article title, Phys. Rev. D, 68, 024031, (2003)
[14] Reisswig, C., Pollney, D.: Class. Quantum Gravity 28, 195015 (2011). 1006.1632
[15] Reisswig, C; Ott, CD; Sperhake, U; Schnetter, E, No article title, Phys. Rev. D, 83, 064008, (2011)
[16] Baker, J; Campanelli, M; Lousto, CO; Takahashi, R, No article title, Phys. Rev. D, 65, 124012, (2002)
[17] Berti, E., Cardoso, V., Gonzalez, J.A., Sperhake, U., Hannam, M., Husa, S., Brügmann, B.: Phys. Rev. D 76, 064034 (2007). arXiv:gr-qc/0703053
[18] Bondi, H, No article title, Nature, 186, 535, (1960) · Zbl 0087.42504
[19] Sachs, R.: Proc. R. Soc. Lond. A 270, 103 (1962)
[20] Bishop, NT; Gómez, R; Lehner, L; Winicour, J, No article title, Phys. Rev. D, 54, 6153, (1996)
[21] Gómez, R; Lehner, L; Papadopoulos, P; Winicour, J, No article title, Class. Quantum Gravity, 14, 977, (1997) · Zbl 0872.53054
[22] Tamburino, L; Winicour, J, No article title, Phys. Rev., 150, 1039, (1966)
[23] Isaacson, R; Welling, J; Winicour, J, No article title, J. Math. Phys., 24, 1824, (1983)
[24] Bishop, NT, No article title, Class. Quantum Gravity, 22, 2393, (2005) · Zbl 1077.83013
[25] Pollney, D., Reisswig, C., Schnetter, E., Dorband, N., Diener, P.: Phys. Rev. D 83, 044045 (2011). 0910.3803
[26] Reisswig, C., Haas, R., Ott, C.D., Abdikamalov, E., Moesta, P., Pollney, D., Schnetter, E.: ArXiv e-prints (2012). 1212.1191
[27] Reisswig, C., Bishop, N.T., Pollney, D., Szilagyi, B. (2009). 0912.1285
[28] Damour, T., Nagar, A., Pollney, D., Reisswig, C.: Phys. Rev. Lett. 108, 131101 (2012). 1110.2938.
[29] Dimmelmeier, H., Font, J.A., Müller, E.: Astron. Astrophys. 393, 523 (2002)
[30] Alcubierre, M.: Introduction to \(3+1\) Numerical Relativity. Oxford University Press, Oxford (2008) · Zbl 1140.83002
[31] Boyle, M., et al.: Phys. Rev. D 78, 104020 (2008). 0804.4184
[32] Taylor, N.W., Boyle, M., Reisswig, C., Scheel, M.A., Chu, T., et al. (2013). 1309.3605.
[33] Moesta, P., Mundim, B.C., Faber, J.A., Haas, R., Noble, S.C., et al. (2013). 1304.5544
[34] Löffler, F., Faber, J., Bentivegna, E., Bode, T., Diener, P., Haas, R., Hinder, I., Mundim, B.C., Ott, C.D., Schnetter, E., et al.: Class. Quantum Gravity 29, 115001 (2012). arXiv:1111.3344 [gr-qc]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.