On the distribution of residues of products of integers. (English) Zbl 0629.10004

Es seien p eine Primzahl, M, N, S, T, \(a_ 1,...,a_ M\), \(b_ 1,...,b_ N\) ganze Zahlen mit \(1\leq M\), \(N\leq p-1\), \(1\leq T\leq p\), sowie (1) \(a_ i\not\equiv a_ j (mod p)\) für \(1\leq i<j\leq M\) und (2) \(b_ i\not\equiv b_ j (mod p)\) für \(1\leq i<j\leq N\). Wenn f(n) die Anzahl der Lösungen von \(a_ xb_ y\equiv n (mod p)\), \(1\leq x\leq M\), \(1\leq y\leq N\) bezeichnet, so wird die Abschätzung \[ | \sum^{S+T}_{n=S+1}f(n)-\frac{MNT}{p}| \quad <^ 2(pMN)^{1/2} \log p \] bewiesen. Speziell mit \(S=0\), \(T=[2p^{3/2} M^{-1/2} N^{- 1/2} \log p]+1\) kann daraus \(\sum^{T}_{n=1}f(n)>0\) hergeleitet werden. Andererseits werden für \(p>900\), \(M=N=T=(p-1)/2\) ganze Zahlen \(a_ 1,...,a_ M\), \(b_ 1,...,b_ N\), S konstruiert, so daß (1) und (2) erfüllt sind, aber \[ | \sum^{S+T}_{n=S+1}f(n)- \frac{MNT}{p}| \quad >\quad \frac{1}{28}(pMN)^{1/2} \] ist. Die Methoden sind elementar.
Reviewer: D.Leitmann


11A07 Congruences; primitive roots; residue systems
11L40 Estimates on character sums
Full Text: DOI


[1] A. Sárközy, Some remarks concerning irregularities of distribution of sequences of integers in arithmetic progressions. IV,Acta Math. Acad. Sci. Hung.,30 (1977), 155–162. · Zbl 0372.10032
[2] А. В. Сокаловский, Об одной теореме А. Шаркоэи,Acta Arithmetica,41 (1982), 27–31. · Zbl 1154.68045
[3] I. M. Vinogradov,The method of trigonometrical sums in the theory of numbers, Interscience (New York, 1954). · Zbl 0055.27504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.