zbMATH — the first resource for mathematics

Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems. (English) Zbl 1402.92194
Summary: Gene regulatory networks control the response of living cells to changes in their environment. A class of piecewise-linear (PWL) models, which capture the switch-like interactions between genes by means of step functions, has been found useful for describing the dynamics of gene regulatory networks. The step functions lead to discontinuities in the right-hand side of the differential equations. This has motivated extensions of the PWL models based on differential inclusions and Filippov solutions, whose analysis requires sophisticated numerical tools.
We present a method for the numerical analysis of one proposed extension, called Aizerman-Pyatnitskii (AP)-extension, by reformulating the PWL models as a mixed complementarity system (MCS). This allows the application of powerful methods developed for this class of nonsmooth dynamical systems, in particular those implemented in the Siconos platform. We also show that under a set of reasonable biological assumptions, putting constraints on the right-hand side of the PWL models, AP-extensions and classical Filippov (F)-extensions are equivalent. This means that the proposed numerical method is valid for a range of different solution concepts. We illustrate the practical interest of our approach through the numerical analysis of three well-known networks developed in the field of synthetic biology.

92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
92C37 Cell biology
92-08 Computational methods for problems pertaining to biology
Full Text: DOI
[1] Hengge-Aronis, R., The general stress response in Escherichia coli, (Storz, G.; Hengge-Aronis, R., Bacterial Stress Responses, (2000), ASM Press Washington, DC), 161-177
[2] Alon, U., An introduction to systems biology: design principles of biological circuits, (2007), Chapman & Hall/CRC Boca Raton, FL
[3] Khalil, A. S.; Collins, J. J., Synthetic biology: applications come of age, Nat. Rev. Genet., 11, 5, 367-379, (2010)
[4] Bolouri, H., Computational modeling of gene regulatory networks — A primer, (2008), Imperial College Press London
[5] Karlebach, G.; Shamir, R., Modelling and analysis of gene regulatory networks, Nat. Rev. Mol. Cell Biol., 9, 10, 770-780, (2008)
[6] Chaouiya, C.; Naldi, A.; Thieffry, D., Logical modelling of gene regulatory networks with ginsim, (van Helden, J.; Toussaint, A.; Thieffry, D., Bacterial Molecular Networks: Methods and Protocols, Methods in Molecular Biology, vol. 804, (2012), Springer New York), 463-479
[7] de Jong, H.; Ropers, D., Strategies for dealing with incomplete information in the modeling of molecular interaction networks, Brief. Bioinform., 7, 4, 354-363, (2006)
[8] Glass, L.; Siegelmann, H. T., Logical and symbolic analysis of robust biological dynamics, Curr. Opin. Genet. Dev., 20, 6, 644-649, (2010)
[9] Abou-Jaoude, W.; Chaves, M.; Gouze, J.-L., A theoretical exploration of birhythmicity in the p53-mdm2 network, PLoS ONE, 6, 2, (2011), e17075
[10] Tournier, L.; Chaves, M., Uncovering operational interactions in genetic networks using asynchronous Boolean dynamics, J. Theor. Biol., 260, 2, 196-209, (2009)
[11] Edwards, R.; Kim, S.; van den Driessche, P., Control design for sustained oscillation in a two gene regulatory network, J. Math. Biol., 62, 4, 453-479, (2011) · Zbl 1232.92048
[12] Glass, L.; Kauffman, S. A., The logical analysis of continuous non-linear biochemical control networks, J. Theor. Biol., 39, 1, 103-129, (1973)
[13] Casey, R.; de Jong, H.; Gouzé, J.-L., Piecewise-linear models of genetic regulatory networks: equilibria and their stability, J. Math. Biol., 52, 1, 27-56, (2006) · Zbl 1091.92030
[14] Edwards, R., Analysis of continuous-time switching networks, Physica D, 146, 1-4, 165-199, (2000) · Zbl 0986.94051
[15] Farcot, E.; Gouzé, J.-L., Periodic solutions of piecewise affine gene network models with non uniform decay rates: the case of a negative feedback loop, Acta Biotheor., 57, 4, 429-455, (2009)
[16] Glass, L.; Pasternack, J. S., Stable oscillations in mathematical models of biological control systems, J. Math. Biol., 6, 207-223, (1978) · Zbl 0391.92001
[17] Filippov, A. F., Differential equations with discontinuous right hand sides, (1988), Kluwer, Dordrecht The Netherlands · Zbl 0664.34001
[18] Gouzé, J.-L.; Sari, T., A class of piecewise linear differential equations arising in biological models, Dyn. Syst., 17, 4, 299-316, (2002) · Zbl 1054.34013
[19] Machina, A.; Ponosov, A., Filippov solutions in the analysis of piecewise linear models describing gene regulatory networks, Nonlinear Anal. TMA, 74, 3, 882-900, (2011) · Zbl 1213.34022
[20] Machina, A.; Edwards, R.; van den Driessche, P., Singular dynamics in gene network models, SIAM J. Appl. Dyn. Syst., 12, 1, 95-125, (2013) · Zbl 1285.34048
[21] Batt, G.; Besson, B.; Ciron, P. E.; de Jong, H.; Dumas, E.; Geiselmann, J.; Monte, R.; Monteiro, P. T.; Page, M.; Rechenmann, F.; Ropers, D., Genetic network analyzer: a tool for the qualitative modeling and simulation of bacterial regulatory networks, (van Helden, J.; Toussaint, A.; Thieffry, D., Bacterial Molecular Networks: Methods and Protocols, Methods in Molecular Biology, vol. 804, (2012), Springer New York), 439-462
[22] Batt, G.; de Jong, H.; Page, M.; Geiselmann, J., Symbolic reachability analysis of genetic regulatory networks using discrete abstractions, Automatica, 44, 4, 982-989, (2008) · Zbl 1283.93046
[23] Ironi, L.; Panzeri, L., A computational framework for qualitative simulation of nonlinear dynamical models of gene-regulatory networks, BMC Bioinform., 10, Suppl 12, S14, (2009)
[24] Plahte, E.; Kjóglum, S., Analysis and generic properties of gene regulatory networks with graded response functions, Physica D, 201, 1, 150-176, (2005) · Zbl 1078.34015
[25] Aizerman, M. A.; Pyatnitskii, E. S., Foundation of a theory of discontinuous systems. 1 & 2, Autom. Remote Control, 35, (1974), 1066-1079 & 1066-1079 · Zbl 0293.93013
[26] Acary, V.; Brogliato, B., (Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics, vol. 35, (2008), Springer Berlin), 525, xxi · Zbl 1173.74001
[27] Heemels, W. P.M. H.; Schumacher, J. M.; Weiland, S., Linear complementarity systems, SIAM J. Appl. Math., 60, 1234-1269, (2000) · Zbl 0954.34007
[28] Pang, J.-S.; Stewart, D., Differential variational inequalities, Math. Program. A, 113, 2, (2008)
[29] Acary, V.; Bonnefon, O.; Brogliato, B., Time-stepping numerical simulation of switched circuits with the nonsmooth dynamical systems approach, IEEE Trans. Comput.-aided Des. Integr. Circuits Syst., 29, 7, 1042-1055, (2010)
[30] Elowitz, M. B.; Leibler, S., A synthetic oscillatory network of transcriptional regulators, Nature, 403, 6767, 335-338, (2000)
[31] Atkinson, M. R.; Savageau, M. A.; Myers, J. T.; Ninfa, A. J., Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli, Cell, 113, 5, 597-608, (2003)
[32] Cantone, I.; Marucci, L.; Iorio, F.; Ricci, M. A.; Belcastro, V.; Bansal, M.; Santini, S.; di Bernardo, M.; di Bernardo, D.; Cosma, P. M., A yeast synthetic network for in vivo assessment of reverse-engineering, Cell, 137, 1, 172-181, (2009)
[33] de Jong, H.; Gouzé, J.-L.; Hernandez, C.; Page, M.; Sari, T.; Geiselmann, J., Qualitative simulation of genetic regulatory networks using piecewise-linear models, Bull. Math. Biol., 66, 2, 301-340, (2004) · Zbl 1334.92282
[34] Mestl, T.; Plahte, E.; Omholt, S. W., A mathematical framework for describing and analysing gene regulatory networks, J. Theor. Biol., 176, 2, 291-300, (1995)
[35] Thomas, R.; d’Ari, R., Biological feedback, (1990), CRC Press Boca Raton, FL · Zbl 0743.92003
[36] Batt, G.; Page, M.; Cantone, I.; Goessler, G.; Monteiro, P. T.; de Jong, H., Efficient parameter search for qualitative models of regulatory networks using symbolic model checking, Bioinform., 26, 18, (2010), i603-i610
[37] Kohavi, Z.; Jha, N. J., Switching and finite automata theory, (2010), Cambridge University Press · Zbl 1222.94047
[38] Plahte, E.; Mestl, T.; Omholt, S. W., A methodological basis for description and analysis of systems with complex switch-like interactions, J. Math. Biol., 36, 4, 321-348, (1998) · Zbl 0897.92001
[39] Ironi, L.; Panzeri, L.; Plahte, E.; Simoncini, V., Dynamics of actively regulated gene networks, Physica D, 240, 8, 779-794, (2011) · Zbl 1218.92040
[40] Machina, A.; Ponsonov, A., Stability of stationary solutions of piecewise affine differential equations describing gene regulatory networks, J. Math. Anal. Appl., 380, 2, 736-749, (2011) · Zbl 1225.34056
[41] Orlov, Y. V., (Discontinuous Systems, Communications and Control Engineering, (2009), Springer Verlag)
[42] Utkin, V. I., Variable structure systems with sliding modes: a survey, IEEE Trans. Automat. Control, 22, 212-222, (1977) · Zbl 0382.93036
[43] Utkin, V. I., Sliding modes in control optimization, (1992), Springer Verlag, Berlin Berlin · Zbl 0748.93044
[44] Acary, V.; Bonnefon, O.; Brogliato, B., (Nonsmooth Modeling and Simulation for Switched Circuits, Lecture Notes in Electrical Engineering, vol. 69, (2011), Dordrecht, Springer), 284, xxiii · Zbl 1208.94003
[45] Acary, V.; Brogliato, B., Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems, Syst. Control Lett., 59, 5, 284-293, (2010) · Zbl 1191.93030
[46] Facchinei, F.; Pang, J. S., (Finite-dimensional Variational Inequalities and Complementarity Problems, Volume I & II, Springer Series in Operations Research, (2003), Springer Verlag NY. Inc.)
[47] Hiriart-Urruty, J. B.; Lemaréchal, C., Fundamentals of convex analysis, (2001), Springer Verlag · Zbl 0998.49001
[48] Rockafellar, R. T.; Wets, R. J.B., Variational analysis, vol. 317, (1998), Springer Verlag New York
[49] Billups, S. C., Algorithms for complementarity problems and generalized equations. ph.D. thesis, university of wisconsin, Madison, available as technical report MP-TR-1995-14, (1995)
[50] Billups, S. C.; Dirkse, S. P.; Ferris, M. C., A comparison of large scale mixed complementarity problem solvers, Comput. Optim. Appl., 7, 3-25, (1997) · Zbl 0883.90116
[51] Dirkse, S. P.; Ferris, M. C., The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems, Optim. Methods Softw., 5, 123-156, (1995)
[52] Ferris, M. C.; Munson, T. S., Interfaces to PATH 3.0: design, implementation and usage, Comput. Optim. Appl., 12, 1-3, 207-227, (1999) · Zbl 1040.90549
[53] Brogliato, B.; Daniilidis, A.; Lemaréchal, C.; Acary, V., On the equivalence between complementarity systems, projected systems and differential inclusions, Syst. Control Lett., 55, 45-51, (2006) · Zbl 1129.90358
[54] Georgescu, C.; Brogliato, B.; Acary, V., Switching, relay and complementarity systems: a tutorial on their well-posedness and relationships, Physica D, 241, 22, 1985-2002, (2012)
[55] Stewart, D., A high accuracy method for solving ODEs with discontinuous right-hand-side, Numer. Math., 58, 299-328, (1990) · Zbl 0693.65049
[56] Dontchev, A. L.; Lempio, F., Difference methods for differential inclusions: a survey, SIAM Reviews, 34, 2, 263-294, (1992) · Zbl 0757.34018
[57] Acary, V.; Brogliato, B.; Goeleven, D., Higher order moreau’s sweeping process: mathematical formulation and numerical simulation, Math. Program. Ser. A, 113, 133-217, (2008) · Zbl 1148.93003
[58] Camlibel, M. K.; Heemels, W. P.M. H.; Schumacher, J. M., Consistency of a time-stepping method for a class of piecewise-linear networks, IEEE Trans. Circuits Syst. I., 49, 349-357, (2002) · Zbl 1368.93279
[59] Han, L.; Tiwari, A.; Camlibel, K.; Pang, J. S., Convergence of time-stepping schemes for passive and extended linear complementarity systems, SIAM J. Numer. Anal., 47, 5, 3768-3796, (2009) · Zbl 1203.65123
[60] Josephy, N. H., Newton’s method for generalized equations, technical report, mathematics research center, university of wisconsin, Madison, (1979)
[61] Rutherford, T., Miles: A mixed inequality and nonlinear equation solver, (1993)
[62] Cottle, R. W.; Pang, J.; Stone, R. E., The linear complementarity problem, (1992), Academic Press, Inc. Boston, MA · Zbl 0757.90078
[63] Al-Khayyal, Faiz A., An implicit enumeration procedure for the general linear complementarity problem, Math. Program. Study, 31, 1-20, (1987) · Zbl 0623.90079
[64] Júdice, J.; Faustino, A.; Ribeiro, I., On the solution of NP-hard linear complementarity problems, TOP, 10, 125-145, (2002) · Zbl 1006.90082
[65] Sherali, H. D.; Krishnamurthy, R. S.; Al-Khayyal, F. A., Enumeration approach for linear complementarity problems based on a reformulation-linearization technique, J. Optim. Theory Appl., 99, 2, 481-507, (1998) · Zbl 0911.90328
[66] Acary, V.; Pérignon, F., An introduction to siconos, technical report TR-0340, INRIA, (2007)
[67] Brogliato, B., Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings, Syst. Control Lett., 51, 5, 343-353, (2004) · Zbl 1157.93455
[68] Acary, V.; Brogliato, B.; Orlov, Y. V., Chattering-free digital sliding-mode control with state observer and disturbance rejection, IEEE Trans. Automat. Control, 57, 5, 1087-1101, (2012) · Zbl 1369.93122
[69] Purcell, O.; Savery, N. J.; Grierson, C. S.; di Bernardo, M., A comparative analysis of synthetic genetic oscillators, J. R. Soc. Interface, 7, 52, 1503-1524, (2010)
[70] Tyson, J. J.; Othmer, H. G., The dynamics of feedback control circuits in biochemical pathways, Progr. Theor. Biol., 5, 1-62, (1978) · Zbl 0448.92010
[71] Marucci, L.; Barton, D. A.W.; Cantone, I.; Ricci, M. A.; Cosma, M. P.; Santini, S.; di Bernardo, D.; di Bernardo, M., How to turn a genetic circuit into a synthetic tunable oscillator, or a bistable switch, PLoS ONE, 4, 12, E8083, (2011)
[72] de Jong, H.; Page, M., Search for steady states of piecewise-linear differential equation models of genetic regulatory networks, ACM/IEEE Trans. Comput. Biol. Bioinform., 5, 2, 208-222, (2008)
[73] Polynikis, A.; Hogan, S. J.; di Bernardo, M., Comparing different ODE modelling approaches for gene regulatory networks, J. Theor. Biol., 261, 4, 511-530, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.