zbMATH — the first resource for mathematics

An object-oriented tridimensional self-regular boundary element method implementation. (English) Zbl 1287.65120
Summary: The object-oriented design used to implement a self-regular formulation of the boundary element method is presented. The self-regular formulation is implemented to four integral equations: the displacement boundary integral equation, and the Somigliana’s integral identities for displacement, stress and strain. The boundary-layer effect that arises in the classical BEM on the transition from interior to boundary points is eliminated and thus special integration schemes to treat nearly singular integrals become unnecessary. The self-regular formulations lead to very accurate results. Comparisons of displacements, stress and strain obtained from analytical solutions and the numerical results for bidimensional and tridimensional elastostatics problems are presented, and the self-regular formulation shows strong stability. The implemented code is open-source and is available under the GNU General Public License.

65N38 Boundary element methods for boundary value problems involving PDEs
Full Text: DOI
[1] Huang, Q.; Cruse, T. A., Some notes on singular integral techniques in boundary element analysis, Int J Numer Methods Eng, 36, 2643-2659, (1993) · Zbl 0781.73076
[2] Rudolphi, T. J., Use of simple solutions in the regularization of hypersingular boundary integral equations, Math Comput Modelling, 15, 269-278, (1991) · Zbl 0728.73081
[3] Matsumoto, T.; Tanaka, M., Boundary stress calculation using regularized boundary integral equation for displacement gradients, Int J Numer Methods Eng, 36, 783-797, (1993) · Zbl 0825.73909
[4] Huang, Q.; Cruse, T. A., On the non-singular traction-BIE in elasticity, Int J Numer Methods Eng, 37, 2041-2072, (1994) · Zbl 0832.73076
[5] Cruse, T. A.; Richardson, J. D., Non-singular somigliana stress identity in elasticity, Int J Numer Methods Eng, 39, 3273-3304, (1996) · Zbl 0886.73005
[6] Richardson, J. D.; Gray, L. J.; Kaplan, T.; Napier, J. A.L., Regularized spectral multipole BEM for plane elasticity, Eng Anal Boundary Elem, 25, 297-311, (2001) · Zbl 1007.74084
[7] Jorge, A. B.; Ribeiro, G. O.; Cruse, T. A.; Fisher, T. S., Self-regular boundary integral equation formulations for Laplace’s equation in 2-D, Int J Numer Methods Eng., 51, 1-29, (2001) · Zbl 0987.65124
[8] Ribeiro, G. O.; Ribeiro, T. S.A.; Jorge, A. B.; Cruse, T. A., Evaluation of non-singular BEM algorithms for potential problems, J Brazilian Soc Mech Sci Eng, 31, 261-268, (2009)
[9] Earlin Lutz, L. J.G.; Ingraffea, Anthony R., Use of ‘simple solutions’ for boundary integral methods in elasticity and fracture analysis, Int J Numer Methods Eng, 35, 1737-1751, (1992) · Zbl 0767.73084
[10] Richardson, J. D.; Cruse, T. A., Nonsingular BEM for fracture modeling, Comput Struc, 66, 695-703, (1998) · Zbl 0933.74074
[11] Kang, S. C.; Ih, J. G., Use of nonsingular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography, J Acoust Soc Am, 109, 1320-1328, (2001)
[12] Liu, Y.; Rizzo, F. J., A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems, Comput Methods Appl Mech Eng, 96, 271-287, (1992) · Zbl 0754.76072
[13] Liu, Y.; Rizzo, F. J., Hypersingular boundary integral equations for radiation and scattering of elastic waves in three dimensions, Comput Methods Appl Mech Eng, 107, 131-144, (1993) · Zbl 0806.73073
[14] Mukherjee, Y. X.; Shah, K.; Mukherjee, S., Thermoelastic fracture mechanics with regularized hypersingular boundary integral equations, Eng Anal Boundry Elem, 23, 89-96, (1999) · Zbl 0953.74073
[15] Poon, H.; Mukherjee, S.; Ahmad, M. F., Use of “simple solutions” in regularizing hypersingular boundary integral equations in elasto-plasticity, J Appl Mech, 65, 39-45, (1998)
[16] Sládek, J.; Sládek, V., Nonsingular traction BIEs for crack problems in elastodynamics, Comput Mech, 25, 590-599, (2000) · Zbl 0985.74061
[17] Sládek, V.; Sládek, J., Plate bending problems using the nonsingular boundary element formulation and C^1-continuous elements, Comput Struc Eng, 54, 679-688, (1995) · Zbl 0877.73075
[18] Telles, J. C.F.; Carrer, J. A.M., Implicit procedures for the solution of elastoplastic problems by the boundary element method, Math Comput Modelling, 15, 303-311, (1991) · Zbl 0725.73093
[19] Bonnet, M.; Mukherjee, S., Implicit BEM formulations for usual and sensitivity problems in elasto-plasticity using the consistent tangent operator concept, Int J Solids Struc, 33, 4461-4480, (1996) · Zbl 0918.73308
[20] Botta, A. S.; Venturini, W. S.; Benallal, A., BEM applied to damage models emphasizing localization and associated regularization techniques, Eng Anal Boundary Elem, 29, 814-827, (2005) · Zbl 1182.74210
[21] Lee, K.; Tan, K., Object-oriented modelling, analysis and concurrency in the boundary element method, WIT Trans Modelling Simulation, 1, 595-609, (1993)
[22] Salgado, N. K.; Aliabadi, M. H.; Callan, R. E., Rule inferencing and object orientation for boundary elements mesh design, Adv Eng Software, 11, 183-190, (1997)
[23] Qiao, H., Object-oriented programming for the boundary element method in two-dimensional heat transfer analysis, Adv Eng Software, 37, 248-259, (2006)
[24] Marczak, R. J., An object-oriented programming framework for boundary integral equation methods, Comput Struc, 82, 1237-1257, (2004)
[25] Marczak, R. J., Object-oriented numerical integration - a template scheme for FEM and BEM applications, Adv Eng Software, 37, 172-183, (2006)
[26] Mackerle, J., Object-oriented programming in FEM and bema bibliography, Adv Eng Software, 35, 325-336, (2004)
[27] Horstmann, C. S., Practical object-oriented development in C++ and Java, (1997), John Wiley and Sons
[28] Goodrich, M. T.; Tamassia, R., Data structures and algorithms in Java, (2001), John Wiley and Sons
[29] INSANE-Project, SVN repository; 2012. 〈http://www.insane.dees.ufmg.br/〉
[30] Sládek, V.; Sládek, J., Non-singular boundary integral representation of stresses, Int J Numer Methods Eng, 33, 1481-1499, (1992) · Zbl 0768.73090
[31] Aliabadi, M. H., The boundary element method - applications in solids and structures, (2002), John Wiley and Sons · Zbl 0994.74003
[32] Ribeiro TSA. Elastoplastic boundary element method with adaptive cell generation. PhD thesis, Osterreich: Technische Universitat Graz; 2006.
[33] Guiggiani, M.; Casalini, P., Direct computation of Cauchy principal value integrals in advanced boundary elements, Int J Numer Methods Eng, 24, 1711-1720, (1987) · Zbl 0635.65020
[34] Mantič, V., A new formula for the C-matrix in the somigliana identity, J Elasticity, 33, 191-201, (1993) · Zbl 0801.73015
[35] Guiggiani, M.; Gigante, A., A general algorithm for multidimensional Cauchy principal value integral in the boundary element method, J Appl Mech, 57, 906-915, (1990) · Zbl 0735.73084
[36] Gao, X. W.; Davies, T. G., Boundary element programming in mechanics, (2002), Cambridge University Press
[37] Eberwien, U.; Duenser, C.; Moser, W., Efficient calculation of internal results in 2D elasticity BEM, Eng Anal Boundary Elem, 29, 447-453, (2005) · Zbl 1182.74214
[38] Huang Q. Boundary element method: an introduction. Technical Report, Vanderbilt University, USA; 1993.
[39] Lachat, J. C.; Watson, J. O., Effective numerical treatment of boundary-integral equations, Int J Numer Methods Eng, 10, 991-1005, (1974) · Zbl 0332.73022
[40] Alves, P. D.; Barros, F. B.; Pitangueira, R. L., An object-oriented approach to the generalized finite element method, Adv Eng Software, 59, 1-18, (2013)
[41] Mal, A. K.; Singh, S. J., Deformation of elastic solids, (1991), Prentice-Hall · Zbl 0754.73002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.