×

Focused information criterion and model averaging based on weighted composite quantile regression. (English) Zbl 06298507

Summary: We study the focused information criterion and frequentist model averaging and their application to post-model-selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non-parametric functions approximated by polynomial splines, we show that, under certain conditions, the asymptotic distribution of the frequentist model averaging WCQR-estimator of a focused parameter is a non-linear mixture of normal distributions. This asymptotic distribution is used to construct confidence intervals that achieve the nominal coverage probability. With properly chosen weights, the focused information criterion based WCQR estimators are not only robust to outliers and non-normal residuals but also can achieve efficiency close to the maximum likelihood estimator, without assuming the true error distribution. Simulation studies and a real data analysis are used to illustrate the effectiveness of the proposed procedure.

MSC:

62-XX Statistics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Azzalini, A. & Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew‐t distribution. J. R. Stat. Soc. Ser. B65, 367-389. · Zbl 1065.62094
[2] Behl, P., Claeskens, G. & Dette, H. (2013). Focused model selection in quantile regression. Statist. Sinica DOI: 10.5705/ss.2012.097.
[3] Bradic, J., Fan, J. & Wang, W. (2011). Penalized Composite quasi‐likelihood for ultrahigh dimensional variable selection. J. R. Stat. Soc. Ser. B73, 325-349. · Zbl 1411.62181
[4] Claeskens, G. & Carroll, R. (2007). An asymptotic theory for model selection inference in general semiparametric problems. Biometrika94, 1-17.
[5] Claeskens, G., Croux, C. & Van Kerckhoven, J. (2006). Variable selection for logistic regression using a prediction‐focused information criterion. Biometrics62, 972-979. · Zbl 1116.62073
[6] Claeskens, G., Croux, C. & Van Kerckhoven, J. (2007). Prediction‐focused model selection for autoregressive models. Aus. J. Statist.49, 359-379. · Zbl 1521.62144
[7] Claeskens, G. & Hjort, N. (2003). The focused information criterion (with discussion). J. Amer. Statist. Assoc.98, 900-945. · Zbl 1045.62003
[8] Hall, P. & Sheather, S. (1988). On the distribution of a studentized quantile. J. R. Stat. Soc. Ser. B50, 381-391. · Zbl 0674.62034
[9] He, X. & Shi, P. (1994). Convergence rate of B‐spline estimators of non‐parametric conditional quantile functions. J. Nonparam. Statist.3, 299-308. · Zbl 1383.62111
[10] He, X. & Shi, P. (1996). Bivariate tensor‐product B‐Splines in a partly linear model. J. Mult. Anal.58, 162-181. · Zbl 0865.62027
[11] Hjort, N. L. & Claeskens, G. (2003). Frequentist model average estimators. J. Amer. Statist. Assoc.98, 879-899. · Zbl 1047.62003
[12] Hjort, N. L. & Claeskens, G. (2006). Focused information criteria and model averaging for Cox’s hazard regression model. J. Amer. Statist. Assoc.101, 1449-1464. · Zbl 1171.62350
[13] Huang, J. Z., Zhang, L. & Zhou, L. (2007). Efficient estimation in marginal partially linear models for longitudinal/clustered data using splines. Scand. J. Statist.34, 451-477. · Zbl 1150.62020
[14] Kabaila, P. & Leeb, H. (2006). On the large‐sample minimal coverage probability of confidence intervals after model selection. J. Amer. Statist. Assoc.101, 619-629. · Zbl 1119.62322
[15] Kai, B., Li, R. & Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric varying‐coefficient partially linear models. Ann. Statist.39, 305-332. · Zbl 1209.62074
[16] Koenker, R. & Bassett, G. (1978). Regression quantiles. Econometrica46, 33-50. · Zbl 0373.62038
[17] Koenker, R. & Machado, J. (1999). Goodness of fit and related inference processes for quantile regression. J. Amer. Statist. Assoc.94, 1296-1310. · Zbl 0998.62041
[18] Leeb, H. & Potscher, B. M. (2005). Model selection and inference: facts and fiction. Economet. Theory21, 21-59. · Zbl 1085.62004
[19] Leeb, H. & Potscher, B. M. (2006). Performance limits for estimators of the risk or distribution of shrinkage‐type estimators, and some general lower risk‐bound results. Economet. Theory22, 69-97. · Zbl 1083.62060
[20] Liu, X., Wang, L. & Liang, H. (2011). Estimation and variable selection for semiparametric additive partial linear model. Statist. Sinica21, 1225-1248. · Zbl 1223.62020
[21] Nierenberg, D., Stukel, T., Baron, J., Dain, B. & Greenberg, E. (1989). Determinants of plasma levels of Beta‐carotene and Retinol. Am. J. Epidemiol.130, 511-521.
[22] Schumaker, L. L. (1981). Spline functions: basic theory, Wiley, New York. · Zbl 0449.41004
[23] Sheather, S. & Maritz, J. (1983). An estimate of the asymptotic standard error of the sample median. Aus. J. Statist.25, 109-122. · Zbl 0516.62042
[24] Siddiqui, M. (1960). Distribution of quantiles from a bivariate population. J. Res. Nat. Bur. Stand.64B, 145-150. · Zbl 0096.13402
[25] Yuan, Z. & Yang, Y. (2005). Combining linear regression models: When and how?J. Amer. Statist. Assoc.100, 1202-1214. · Zbl 1117.62454
[26] Zhang, X. & Liang, H. (2011). Focused information criterion and model averaging for generalized additive partial linear models. Ann. Statist.39, 174-200. · Zbl 1209.62088
[27] Zhang, X., Wan, A. T. K. & Zhou, Z. (2012). Focused information criterion and model averaging in a Tobit model with a non‐zero threshold. J. Bus. Econ. Stat.30, 132-142.
[28] Zou, H. & Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. Ann. Statist.36, 1108-1126. · Zbl 1360.62394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.