×

Object-oriented modelling of general flexible multibody systems. (English) Zbl 1288.93016

Summary: This paper presents a general approach to object-oriented modelling of flexible multibody systems, based on the floating frame of reference (FFR) formulation. The data describing a flexible body can be computed analytically, having defined its shape functions matrices, or calculated by several finite element method (FEM) packages as a result of a modal analysis. By the proposed approach, a modular model is then obtained in an object-oriented language, namely Modelica. This allows to integrate very realistic descriptions of distributed flexibility in multidomain models, with significant advantages for a variety of simulation studies. After describing the general methodology, the paper presents some simulation results, to validate the approach with respect to benchmark cases considered in the literature.

MSC:

93A30 Mathematical modelling of systems (MSC2010)
68Q10 Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.)
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] DOI: 10.1016/j.arcontrol.2004.02.002
[2] DOI: 10.1016/0098-1354(91)87006-U
[3] Mattsson S., Recent Advances in Computer Aided Control Systems pp 291– (1993)
[4] DOI: 10.1016/0098-1354(95)00196-4
[5] Maffezzoni C., Math. Modelling Syst. 4 pp 121– (1998)
[6] DOI: 10.1007/s11044-006-9012-8 · Zbl 1099.74065
[7] Otter M., The new Modelica multibody library, in 3rd Modelica Conference (2003)
[8] Shabana A.A., Cambridge University Press, New York (1998)
[9] Ritz W., Journal für die Reine und Angewandte Mathematik. 135 (1909)
[10] DOI: 10.2514/3.4741 · Zbl 0159.56202
[11] DOI: 10.1007/s11044-008-9116-4 · Zbl 1332.70024
[12] DOI: 10.1007/s11044-007-9039-5 · Zbl 1113.70004
[13] DOI: 10.1007/s11044-010-9238-3 · Zbl 1243.70002
[14] Nowakowski C., Model order reduction in elastic multibody systems using the floating frame of reference formulation, in 7th Vienna International Conference on Mathematical Modelling – MATHMOD (2012)
[15] DOI: 10.1243/14644193JMBD164
[16] Géradin M., Flexible Multibody Dynamics: A Finite Element Approach (2001)
[17] DOI: 10.1002/nme.1620261006 · Zbl 0661.73059
[18] DOI: 10.1007/s11044-009-9177-z · Zbl 1379.70032
[19] Heckmann A., The DLR FlexibleBodies library to model large motions of beams and of flexible bodies exported from finite element programs, in 5th Modelica Conference (2006)
[20] DOI: 10.1080/08905459408905214
[21] DOI: 10.1023/A:1008314826838 · Zbl 0960.70006
[22] DOI: 10.1016/j.cma.2005.02.032 · Zbl 1120.74625
[23] Craig R., Fundamentals of Structural Dynamics (2006) · Zbl 1118.70001
[24] DOI: 10.1007/s11044-010-9187-x · Zbl 1342.70019
[25] DOI: 10.1007/978-3-322-93975-3
[26] Meirovitch L., Analytical Methods in Vibration (1967) · Zbl 0166.43803
[27] DOI: 10.1006/jsvi.1998.1563
[28] Ferretti G., Object-oriented modelling and simulation of flexible multibody thin beams in Modelica with the finite element method, in 4th Modelica Conference (2005)
[29] DOI: 10.1016/0045-7949(96)00352-5 · Zbl 0918.73186
[30] DOI: 10.1007/s11044-006-9009-3 · Zbl 1146.70318
[31] DOI: 10.1006/jsvi.2001.3673
[32] DOI: 10.1006/jsvi.1997.1051
[33] DOI: 10.1023/A:1015567829908 · Zbl 1060.70011
[34] DOI: 10.1023/B:MUBO.0000040799.63053.d9 · Zbl 1067.70007
[35] DOI: 10.1023/A:1011427015995 · Zbl 0976.74030
[36] DOI: 10.1007/s11044-008-9114-6 · Zbl 1347.70016
[37] DOI: 10.2514/3.21473 · Zbl 0833.70006
[38] DOI: 10.1023/A:1026433909962 · Zbl 0978.74046
[39] DOI: 10.1023/A:1008204330035 · Zbl 0883.73045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.