×

zbMATH — the first resource for mathematics

Simulation of compressible viscous flow in time-dependent domains. (English) Zbl 1426.76233
Summary: The paper is concerned with the simulation of viscous compressible flow in time dependent domains. The dependence on time of the domain occupied by the fluid is taken into account with the aid of the Arbitrary Lagrangian-Eulerian (ALE) formulation of the compressible Navier-Stokes equations. They are discretized by the discontinuous Galerkin finite element method using piecewise polynomial discontinuous approximations. The time discretization is based on a semi-implicit linearized scheme, which leads to the solution of a linear algebraic system on each time level. A suitable treatment of boundary conditions and shock capturing are used, allowing the solution of flow with a wide range of Mach numbers. The applicability of the developed method is demonstrated by computational results obtained for compressible viscous flow in a channel with moving walls and flow induced airfoil vibrations.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Badia, S.; Codina, R., On some fluid-structure iterative algorithms using pressure segregation methods. application to aeroelasticity, Int. J. Numer. Methods Eng., 72, 46-71, (2007) · Zbl 1194.74361
[2] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138, 251-285, (1997) · Zbl 0902.76056
[3] Baumann, C. E.; Oden, J. T., A discontinuous hp finite element method for the Euler and Navier-Stokes equations, Int. J. Numer. Methods Fluids, 31, 79-95, (1999) · Zbl 0985.76048
[4] Davis, T. A.; Duff, I. S., A combined unifrontal/multifrontal method for unsymmetric sparse matrices, ACM Trans. Math. Softw., 25, 1-19, (1999) · Zbl 0962.65027
[5] Dolejší, V., Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows, Commun. Comput. Phys., 4, 231-274, (2008) · Zbl 1364.76085
[6] Dolejší, V.; Feistauer, M., A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow, J. Comput. Phys., 198, 727-746, (2004) · Zbl 1116.76386
[7] Dolejší, V.; Feistauer, M.; Schwab, C., On some aspects of the discontinuous Galerkin finite element method for conservation laws, Math. Comput. Simul., 61, 333-346, (2003) · Zbl 1013.65108
[8] Dubcová, L.; Feistauer, M.; Horáček, J.; Sváček, P., Numerical simulation of interaction between turbulent flow and a vibrating airfoil, Comput. Visual. Sci., 12, 207-225, (2009) · Zbl 1426.74127
[9] Feistauer, M.; Dolejší, V.; Kučera, V., On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers, Comput. Visual. Sci., 10, 17-27, (2007)
[10] Feistauer, M.; Felcman, J.; Straškraba, I., Mathematical and computational methods for compressible flow, (2003), Clarendon Press Oxford · Zbl 1028.76001
[11] Feistauer, M.; Kučera, V., On a robust discontinuous Galerkin technique for the solution of compressible flow, J. Comput. Phys., 224, 208-221, (2007) · Zbl 1114.76042
[12] Nomura, T.; Hughes, T. J.R., An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Comput. Methods Appl. Mech. Eng., 95, 115-138, (1992) · Zbl 0756.76047
[13] Punčochářová, P.; Furst, J.; Kozel, K.; Horáček, J., Numerical solution of compressible flow with low Mach number through oscillating glottis, (Zolotarev, I.; Horáček, J., Proceedings of the 9th International Conference on Flow-Induced Vibration (FIV’2008), (2008), Institute of Thermomechanics ASCR Prague), 135-140
[14] Sváček, P.; Feistauer, M.; Horáček, J., Numerical simulation of flow induced airfoil vibrations with large amplitudes, J. Fluids Struct., 23, 391-411, (2007)
[15] van der Vegt, J. J.W.; van der Ven, H., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flow, J. Comput. Phys., 182, 546-585, (2002) · Zbl 1057.76553
[16] Vijayasundaram, G., Transonic flow simulation using upstream centered scheme of Godunov type in finite elements, J. Comput. Phys., 63, 416-433, (1986) · Zbl 0592.76081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.