×

zbMATH — the first resource for mathematics

A note on the proportionality between some consistency indices in the AHP. (English) Zbl 1288.91043
Summary: Analyzing the consistency of preferences is an important step in decision making with pairwise comparison matrices, and several indices have been proposed in order to estimate it. In this paper we prove the proportionality between some consistency indices in the framework of the Analytic Hierarchy Process. Knowing such equivalences eliminates redundancy in the consideration of evidence for consistent preferences.

MSC:
91B06 Decision theory
62J15 Paired and multiple comparisons; multiple testing
Software:
FVK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aguaròn, J.; Moreno-Jimènez, J. M., The geometric consistency index: approximated threshold, Eur. J. Oper. Res., 147, 137-145, (2003) · Zbl 1060.90657
[2] Barzilai, J., Consistency measures for pairwise comparison matrices, J. Multi-Crit. Decis. Anal., 7, 123-132, (1998) · Zbl 0910.90001
[3] Cavallo, B.; D’Apuzzo, L., A general unified framework for pairwise comparison matrices in multicriterial methods, Int. J. Intell. Syst., 24, 377-398, (2009) · Zbl 1163.68336
[4] Cavallo, B.; D’Apuzzo, L., Characterizations of consistent pairwise comparison matrices over abelian linearly ordered groups, Int. J. Intell. Syst., 25, 1035-1059, (2010) · Zbl 1202.90156
[5] Chiclana, F.; Herrera-Viedma, E.; Alonso, S.; Herrera, F., Cardinal consistency of reciprocal preference relations: A characterization of multiplicative transitivity, IEEE Trans. Fuzzy Syst., 17, 14-23, (2009)
[6] Crawford, G.; Williams, C., A note on the analysis of subjective judgement matrices, J. Math. Psychol., 29, 25-40, (1985)
[7] Duszak, Z.; Koczkodaj, W. W., Generalization of a new definition of consistency for pairwise comparisons, Inform. Process. Lett., 52, 273-276, (1994) · Zbl 0815.68084
[8] Fedrizzi, M.; Kacprzyk, J.; Fedrizzi, M., On a consensus measure in a group MCDM problem, Multiperson Decision Making Models using Fuzzy Sets and Possibility Theory, Theory and Decision Library, series B: Mathematical and Statistical Methods, vol. 18, (1990), Kluwer Academic Publisher Dortrecht, The Netherlands
[9] Fedrizzi, M.; Brunelli, M., On the priority vector associated with a reciprocal relation and a pairwise comparison matrix, Soft Comput., 14, 639-645, (2010) · Zbl 1187.68603
[10] Fedrizzi, M.; Fedrizzi, M.; Marques Pereira, R. A., On the issue of consistency in dynamical consensual aggregation, (Bouchon-Meunier, B.; Gutierrez Rios, J.; Magdalena, L.; Yager, R. R., Technologies for Constructing Intelligent Systems, Studies in Fuzziness and Soft Computing, vols. 1, 89, (2002), Springer Heidelberg), 129-137 · Zbl 1066.68122
[11] Fedrizzi, M.; Giove, S., Incomplete pairwise comparisons and consistency optimization, Eur. J. Oper. Res., 183, 303-313, (2007) · Zbl 1127.90362
[12] Golden, B. L.; Wang, Q., An alternate measure of consistency, (Golden, B. L.; Wasil, E. A.; Harker, P. T., The Analythic Hierarchy Process, Applications and studies, (1989), Springer-Verlag Berlin-Heidelberg), 68-81
[13] Koczkodaj, W. W., A new definition of consistency for pairwise comparisons, Math. Comput. Model., 18, 79-84, (1993) · Zbl 0804.92029
[14] Lamata, M. T.; Peláez, J. I., A method for improving the consistency of judgments, Int. J. Uncertain. Fuzziness, 10, 677-686, (2002) · Zbl 1074.68621
[15] Miller, G. A., The magical number seven plus or minus two: some limits on our capacity for processing information, Psychol. Rev., 63, 81-97, (1956)
[16] Peláez, J. I.; Lamata, M. T., A new measure of inconsistency for positive reciprocal matrices, Comput. Math. Appl., 46, 1839-1845, (2003) · Zbl 1121.91334
[17] Ramı´k, J.; Korviny, P., Inconsistency of pair-wise comparison matrix with fuzzy elements based on geometric mean, Fuzzy Set. Syst., 161, 1604-1613, (2010) · Zbl 1186.90145
[18] Ramı´k, J.; Perzina, R., A method for solving fuzzy multicriteria decision problems with dependent criteria, Fuzzy Optim. Decis. Making, 9, 123-141, (2010) · Zbl 1187.90339
[19] Saaty, T. L., A scaling method for priorities in hierarchical structures, J. Math. Psychol., 15, 234-281, (1977) · Zbl 0372.62084
[20] Shiraishi, S.; Obata, T.; Daigo, M., Properties of a positive reciprocal matrix and their application to AHP, J. Oper. Res. Soc. Jpn., 41, 404-414, (1998) · Zbl 1003.15019
[21] S. Shiraishi, T. Obata, M. Daigo, N. Nakajima, Assesment for an incomplete matrix and improvement of the inconsistent comparison: computational experiments, in: Proceedings of ISAHP 1999, Kobe, Japan, 1999.
[22] Shiraishi, S.; Obata, T., On a maximization problem arising from a positive reciprocal matrix in the AHP, Bull. Inf. Cybern., 34, 91-96, (2002) · Zbl 1270.91019
[23] Stein, W. E.; Mizzi, P. J., The harmonic consistency index for the analytic hierarchy process, Eur. J. Oper. Res., 177, 488-497, (2007) · Zbl 1111.90057
[24] Tanino, T., Fuzzy preference orderings in group decision making, Fuzzy Set. Syst., 12, 117-131, (1984) · Zbl 0567.90002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.