zbMATH — the first resource for mathematics

\(L^p\)-nuclearity, traces, and Grothendieck-Lidskii formula on compact Lie groups. (English) Zbl 1296.47019
Authors’ summary: “Given a compact Lie group \(G\), in this paper we give symbolic criteria for operators to be nuclear and \(r\)-nuclear on \(L^p(G)\)-spaces, with applications to distribution of eigenvalues and trace formulae. Since criteria in terms of kernels are often not effective in view of Carleman’s example, in this paper we adopt the symbolic point of view. The criteria here are given in terms of the concept of matrix symbols defined on the noncommutative analogue of the phase space \(G\times\widehat G\), where \(\widehat G\) is the unitary dual of \(G\). No regularity of the kernel (or of the symbol) is assumed so that several of the obtained criteria extend to the more general setting of compact topological groups.”
Applications include one to the trace formula for the heat kernel.

47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
35S05 Pseudodifferential operators as generalizations of partial differential operators
43A75 Harmonic analysis on specific compact groups
22E30 Analysis on real and complex Lie groups
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
Full Text: DOI arXiv
[1] Buzano, E.; Toft, J., Schatten-von Neumann properties in the Weyl calculus, J. Funct. Anal., 259, 12, 3080-3114, (2010) · Zbl 1210.47072
[2] Carleman, T., Über die fourierkoeffizienten einer stetigen funktion, Acta Math., 41, 1, 377-384, (1916), Aus einem Brief an Herrn A. Wiman · JFM 46.0444.01
[3] Delgado, J., The trace of nuclear operators on \(L^p(\mu)\) for σ-finite Borel measures on second countable spaces, Integral Equ. Oper. Theory, 68, 1, 61-74, (2010) · Zbl 1198.47035
[4] Defant, A.; Floret, K., Tensor norms and operator ideals, North-Holland Mathematics Studies, vol. 176, (1993), North-Holland Publishing Co. Amsterdam · Zbl 0774.46018
[5] Dasgupta, A.; Ruzhansky, M., Gevrey functions and ultradistributions on compact Lie groups and homogeneous spaces, (2012)
[6] Delgado, J.; Ruzhansky, M., Schatten classes and traces on compact Lie groups, (2013)
[7] Delgado, J.; Wong, M. W., \(L^p\)-nuclear pseudodifferential operators on \(\mathbb{Z}\) and \(\mathbb{S}\), Proc. Am. Math. Soc., 141, 3935-3942, (2013) · Zbl 1282.47066
[8] Gohberg, I.; Goldberg, S.; Krupnik, N., Traces and determinants of linear operators, Operator Theory: Advances and Applications, vol. 116, (2000), Birkhäuser Verlag Basel · Zbl 0946.47013
[9] Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 1955, 16, 140, (1955) · Zbl 0123.30301
[10] Hinrichs, A.; Pietsch, A., p-nuclear operators in the sense of Grothendieck, Math. Nachr., 283, 2, 232-261, (2010) · Zbl 1200.47025
[11] König, H., Eigenvalues of p-nuclear operators, (Proceedings of the International Conference on Operator Algebras, Ideals, and Their Applications in Theoretical Physics, Leipzig, 1977, (1978), Teubner Leipzig), 106-113
[12] Lidskiĭ, V. B., Non-selfadjoint operators with a trace, Dokl. Akad. Nauk SSSR, 125, 485-487, (1959) · Zbl 0104.33801
[13] Oloff, R., p-normierte operatorenideale, Beitr. Anal., 4, 105-108, (1972), Tagungsbericht zur Ersten Tagung der WK Analysis, 1970 · Zbl 0252.47021
[14] Pietsch, A., Operator ideals, North-Holland Mathematical Library, vol. 20, (1980), North-Holland Publishing Co. Amsterdam, Translated from German by the author · Zbl 0399.47039
[15] Pietsch, A., Grothendieck’s concept of a p-nuclear operator, Integral Equ. Oper. Theory, 7, 2, 282-284, (1984) · Zbl 0573.47014
[16] Pietsch, A., Eigenvalues and s-numbers, Cambridge Studies in Advanced Mathematics, vol. 13, (1987), Cambridge University Press Cambridge · Zbl 0615.47019
[17] Reinov, O. I.; Laif, Q., Grothendieck-lidskii theorem for subspaces of lp-spaces, Math. Nachr., 286, 2-3, 279-282, (2013) · Zbl 1353.47038
[18] Ruzhansky, M.; Turunen, V., On the toroidal quantization of periodic pseudo-differential operators, Numer. Funct. Anal. Optim., 30, 1098-1124, (2009) · Zbl 1193.35262
[19] Ruzhansky, M.; Turunen, V., Pseudo-differential operators and symmetries. background analysis and advanced topics, Pseudo-Differential Operators. Theory and Applications, vol. 2, (2010), Birkhäuser Verlag Basel · Zbl 1193.35261
[20] Ruzhansky, M.; Turunen, V., Quantization of pseudo-differential operators on the torus, J. Fourier Anal. Appl., 16, 6, 943-982, (2010) · Zbl 1252.58013
[21] Ruzhansky, M.; Turunen, V., Global quantization of pseudo-differential operators on compact Lie groups, \(\operatorname{SU}(2)\), 3-sphere, and homogeneous spaces, Int. Math. Res. Not., 11, 2439-2496, (2013) · Zbl 1317.22007
[22] Ruzhansky, M.; Turunen, V.; Wirth, J., Hörmander class of pseudo-differential operators on compact Lie groups and global hypoellipticity, (2010)
[23] Ruzhansky, M.; Wirth, J., On multipliers on compact Lie groups, Funct. Anal. Appl., 47, 1, 87-91, (2013) · Zbl 1276.43001
[24] Shubin, M. A., Pseudodifferential operators and spectral theory, (2001), Springer-Verlag Berlin, Translated from the 1978 Russian original by Stig I. Andersson · Zbl 0980.35180
[25] Stein, E. M., Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, vol. 63, (1970), Princeton University Press Princeton, NJ · Zbl 0193.10502
[26] Toft, J., Schatten-von Neumann properties in the Weyl calculus, and calculus of metrics on symplectic vector spaces, Ann. Glob. Anal. Geom., 30, 2, 169-209, (2006) · Zbl 1106.35155
[27] Toft, J., Schatten properties for pseudo-differential operators on modulation spaces, (Pseudo-Differential Operators, Lecture Notes in Math., vol. 1949, (2008), Springer Berlin), 175-202 · Zbl 1190.47057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.