×

Sharp vanishing thresholds for cohomology of random flag complexes. (English) Zbl 1294.05195

Summary: For every \(k \geq 1\), the \(k\)-th cohomology group \(H^k(X, \mathbb{Q})\) of the random flag complex \(X \sim X(n,p)\) passes through two phase transitions: one where it appears and one where it vanishes. We describe the vanishing threshold and show that it is sharp. Using the same spectral methods, we also find a sharp threshold for the fundamental group \(\pi_1(X)\) to have Kazhdan’s property \((T)\). Combining with earlier results, we obtain as a corollary that for every \(k \geq 3\), there is a regime in which the random flag complex is rationally homotopy equivalent to a bouquet of \(k\)-dimensional spheres.

MSC:

05E45 Combinatorial aspects of simplicial complexes
05C80 Random graphs (graph-theoretic aspects)
05C10 Planar graphs; geometric and topological aspects of graph theory

Software:

MathOverflow

References:

[1] R. Aharoni, E. Berger, and R. Meshulam, ”Eigenvalues and homology of flag complexes and vector representations of graphs,” Geom. Funct. Anal., vol. 15, iss. 3, pp. 555-566, 2005. · Zbl 1074.05058 · doi:10.1007/s00039-005-0516-9
[2] N. Alon and J. H. Spencer, The Probabilistic Method, Third ed., Hoboken, NJ: John Wiley & Sons, 2008. · Zbl 1148.05001 · doi:10.1002/9780470277331
[3] L. Aronshtam and N. Linial, When does the top homology of a random simplicial complex vanish?. · Zbl 1326.55019 · doi:10.1002/rsa.20495
[4] E. Babson, Fundamental groups of random clique complexes, 2012.
[5] E. Babson, C. Hoffman, and M. Kahle, ”The fundamental group of random 2-complexes,” J. Amer. Math. Soc., vol. 24, iss. 1, pp. 1-28, 2011. · Zbl 1270.20042 · doi:10.1090/S0894-0347-2010-00677-7
[6] W. Ballmann and J. Świpolhkatkowski, ”On \(L^2\)-cohomology and property (T) for automorphism groups of polyhedral cell complexes,” Geom. Funct. Anal., vol. 7, iss. 4, pp. 615-645, 1997. · Zbl 0897.22007 · doi:10.1007/s000390050022
[7] A. Björner, ”Topological methods,” in Handbook of Combinatorics, Vol. 1, 2, Amsterdam: Elsevier, 1995, pp. 1819-1872. · Zbl 0851.52016
[8] B. Bollobás, Random Graphs, Second ed., Cambridge: Cambridge Univ. Press, 2001, vol. 73. · Zbl 0979.05003 · doi:10.1017/CBO9780511814068
[9] A. Borel, ”Cohomologie de certains groupes discretes et laplacien \(p\)-adique (d’après H. Garland),” in Séminaire Bourbaki, 26e Année (1973/1974), Exp. No. 437, New York: Springer-Verlag, 1975, vol. 431, pp. 12-35. · Zbl 0376.22009 · doi:10.1007/BFb0066362
[10] D. Cohen, A. Costa, M. Farber, and T. Kappeler, ”Topology of random 2-complexes,” Discrete Comput. Geom., vol. 47, iss. 1, pp. 117-149, 2012. · Zbl 1237.55009 · doi:10.1007/s00454-011-9378-0
[11] B. DeMarco, A. Hamm, and J. Kahn, ”On the triangle space of a random graph,” J. Comb., vol. 4, iss. 2, pp. 229-249, 2013. · Zbl 1275.05049 · doi:10.4310/JOC.2013.v4.n2.a4
[12] D. Dotterrer and M. Kahle, ”Coboundary expanders,” J. Topol. Anal., vol. 4, iss. 4, pp. 499-514, 2012. · Zbl 1259.05151 · doi:10.1142/S1793525312500197
[13] P. ErdHos and A. Rényi, ”On random graphs. I,” Publ. Math. Debrecen, vol. 6, pp. 290-297, 1959. · Zbl 0092.15705
[14] R. Forman, ”A user’s guide to discrete Morse theory,” Sém. Lothar. Combin., vol. 48, p. 48, 2002. · Zbl 1048.57015
[15] H. Garland, ”\(p\)-adic curvature and the cohomology of discrete subgroups of \(p\)-adic groups,” Ann. of Math., vol. 97, pp. 375-423, 1973. · Zbl 0262.22010 · doi:10.2307/1970829
[16] A. Hatcher, Algebraic Topology, Cambridge: Cambridge Univ. Press, 2002. · Zbl 1044.55001
[17] A. J. Hoffman and H. W. Wielandt, ”The variation of the spectrum of a normal matrix,” Duke Math. J., vol. 20, pp. 37-39, 1953. · Zbl 0051.00903 · doi:10.1215/S0012-7094-53-02004-3
[18] C. Hoffman, M. Kahle, and E. Paquette, Spectral gaps of random graphs and applications to random topology, 2013.
[19] S. Janson, T. Łuczak, and A. Rucinski, Random Graphs, Wiley-Interscience, New York, 2000. · Zbl 0968.05003 · doi:10.1002/9781118032718
[20] M. Kahle, ”Topology of random clique complexes,” Discrete Math., vol. 309, iss. 6, pp. 1658-1671, 2009. · Zbl 1215.05163 · doi:10.1016/j.disc.2008.02.037
[21] G. Kalai, ”Enumeration of \({\mathbf Q}\)-acyclic simplicial complexes,” Israel J. Math., vol. 45, iss. 4, pp. 337-351, 1983. · Zbl 0535.57011 · doi:10.1007/BF02804017
[22] D. N. Kozlov, ”The threshold function for vanishing of the top homology group of random \(d\)-complexes,” Proc. Amer. Math. Soc., vol. 138, iss. 12, pp. 4517-4527, 2010. · Zbl 1222.55005 · doi:10.1090/S0002-9939-2010-10596-8
[23] N. Linial and R. Meshulam, ”Homological connectivity of random 2-complexes,” Combinatorica, vol. 26, iss. 4, pp. 475-487, 2006. · Zbl 1121.55013 · doi:10.1007/s00493-006-0027-9
[24] R. Meshulam and N. Wallach, ”Homological connectivity of random \(k\)-dimensional complexes,” Random Structures Algorithms, vol. 34, iss. 3, pp. 408-417, 2009. · Zbl 1177.55011 · doi:10.1002/rsa.20238
[25] B. Pittel, ”A random graph with a subcritical number of edges,” Trans. Amer. Math. Soc., vol. 309, iss. 1, pp. 51-75, 1988. · Zbl 0658.05062 · doi:10.2307/2001158
[26] . J-P. Serre, ”Groupes d’homotopie et classes de groupes abéliens,” Ann. of Math., vol. 58, pp. 258-294, 1953. · Zbl 0052.19303 · doi:10.2307/1969789
[27] E. Wofseyphantomx(mathoverflow.net/users/75), Sufficient conditions for rational homotopy equivalence.
[28] A. \DZuk, ”Property (T) and Kazhdan constants for discrete groups,” Geom. Funct. Anal., vol. 13, iss. 3, pp. 643-670, 2003. · Zbl 1036.22004 · doi:10.1007/s00039-003-0425-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.