×

Zeta functions of regular arithmetic schemes at \(s=0\). (English) Zbl 1408.14076

Summary: Lichtenbaum conjectured the existence of a Weil-étale cohomology in order to describe the vanishing order and the special value of the zeta function of an arithmetic scheme \(\mathcal X\) at \(s=0\) in terms of Euler-Poincaré characteristics. Assuming the (conjectured) finite generation of some étale motivic cohomology groups we construct such a cohomology theory for regular schemes proper over \(Spec(\mathbb Z)\). In particular, we obtain (unconditionally) the right Weil-étale cohomology for geometrically cellular schemes over number rings. We state a conjecture expressing the vanishing order and the special value up to sign of the zeta function \({\zeta}(X,s)\) at \(s=0\) in terms of a perfect complex of abelian groups \(R{\Gamma}W,c(X,Z)\). Then we relate this conjecture to Soulé’s conjecture and to the Tamagawa number conjecture of Bloch-Kato, and deduce its validity in simple cases.

MSC:

14F20 Étale and other Grothendieck topologies and (co)homologies
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
14F42 Motivic cohomology; motivic homotopy theory
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] D. Benois and T. Nguyen Quang Do, Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs \(\mathbb{Q}(m)\) sur un corps abélien , Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), 641-672. · Zbl 1125.11351
[2] S. Bloch, “Algebraic cycles and the Beilinson conjectures” in The Lefschetz Centennial Conference, Part I (Mexico City, 1984) , Contemp. Math. 58 , Amer. Math. Soc., Providence, 1986, 65-79. · Zbl 0605.14017
[3] A. Borel, Stable real cohomology of arithmetic groups , Ann. Sci. Éc. Norm. Supér. (4) 7 (1974), 235-272. · Zbl 0316.57026
[4] P. Brosnan, On motivic decompositions arising from the method of Białynicki-Birula , Invent. Math. 161 (2005), 91-111. · Zbl 1085.14045
[5] J. I. Burgos Gil, Semipurity of tempered Deligne cohomology , Collect. Math. 59 (2008), 79-102. · Zbl 1194.14030
[6] J. I. Burgos Gil, E. Feliu, and Y. Takeda, On Goncharov’s regulator and higher arithmetic chow groups , Int. Math. Res. Not. IMRN 2011 , no. 1, 40-73. · Zbl 1206.14046
[7] D. Burns, Perfecting the nearly perfect , Pure Appl. Math. Q. 4 (2008), 1041-1058. · Zbl 1198.19003
[8] D. Burns and M. Flach, On Galois structure invariants associated to Tate motives , Amer. J. Math. 120 (1998), 1343-1397. · Zbl 0929.11050
[9] P. Deligne, La conjecture de Weil. I , Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273-307. · Zbl 0287.14001
[10] C. Deninger, “Analogies between analysis on foliated spaces and arithmetic geometry” in Groups and Analysis , London Math. Soc. Lecture Note Ser. 354 , Cambridge Univ. Press, Cambridge, 2008, 174-190. · Zbl 1163.37006
[11] M. Flach, “The equivariant Tamagawa number conjecture: a survey” with an appendix by C. Greither in Stark’s Conjectures: Recent Work and New Directions , Contemp. Math. 358 , Amer. Math. Soc., Providence, 2004, 79-125. · Zbl 1070.11025
[12] M. Flach, Cohomology of topological groups with applications to the Weil group , Compos. Math. 144 (2008), 633-656. · Zbl 1145.18006
[13] M. Flach and B. Morin, On the Weil-étale topos of regular arithmetic schemes , Doc. Math. 17 (2012), 313-399. · Zbl 1288.14011
[14] J.-M. Fontaine, Valeurs spéciales des fonctions \(L\) des motifs , Astérisque 206 (1992), 205-249, Séminaire Bourbaki 1991/1992, no. 751. · Zbl 0799.14006
[15] J.-M. Fontaine and B. Perrin-Riou, “Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions \(L\)” in Motives (Seattle, WA, 1991) , Proc. Sympos. Pure Math. 55 , Amer. Math. Soc., Providence, 1994, 599-706. · Zbl 0821.14013
[16] T. Geisser, Motivic cohomology over Dedekind rings , Math. Z. 248 (2004), 773-794. · Zbl 1062.14025
[17] T. Geisser, Weil-étale cohomology over finite fields , Math. Ann. 330 (2004), 665-692. · Zbl 1069.14021
[18] T. Geisser, “Motivic cohomology, \(K\)-theory and topological cyclic homology” in Handbook of K-Theory, I , Springer, Berlin, 2005, 193-234. · Zbl 1113.14017
[19] T. Geisser, Duality via cycle complexes , Ann. of Math. (2) 172 (2010), 1095-1126. · Zbl 1215.19001
[20] T. Geisser and M. Levine, The \(K\)-theory of fields in characteristic \(p\) , Invent. Math. 139 (2000), 459-493. · Zbl 0957.19003
[21] T. Geisser and M. Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky , J. Reine Angew. Math. 530 (2001), 55-103. · Zbl 1023.14003
[22] A. B. Goncharov, Polylogarithms, regulators, and Arakelov motivic complexes , J. Amer. Math. Soc. 18 (2005), 1-60. · Zbl 1104.11036
[23] A. Grothendieck, M. Artin, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas, I , Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Lecture Notes in Math. 269 , Springer, Berlin, 1972; II , Lecture Notes in Math. 270 ; III , Lecture Notes in Math. 305 , 1973. · Zbl 0234.00007
[24] A. Holmstrom and J. Scholbach, Arakelov motivic cohomology I , to appear in J. Algebraic Geom., preprint, [math.NT]. 1012.2523v3
[25] B. Kahn, Équivalences rationnelle et numérique sur certaines variétés de type abélien sur un corps fini , Ann. Sci. Éc. Norm. Supér. (4) 36 (2003), 977-1002. · Zbl 1073.14034
[26] B. Kahn, “Algebraic \(K\)-theory, algebraic cycles and arithmetic geometry” in Handbook of \(K\)-Theory, I , Springer, Berlin, 2005, 351-428. · Zbl 1115.19003
[27] K. Kato and S. Saito, “Global class field theory of arithmetic schemes” in Applications of Algebraic \(K\)-Theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colo., 1983) , Contemp. Math. 55 , Amer. Math. Soc., Providence, 1986, 255-331. · Zbl 0614.14001
[28] F. F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div,” Math. Scand. 39 (1976), 19-55. · Zbl 0343.14008
[29] M. Kolster and J. W. Sands, Annihilation of motivic cohomology groups in cyclic 2-extensions , Ann. Sci. Math. Québec 32 (2008), 175-187. · Zbl 1236.11099
[30] M. Levine, Techniques of localization in the theory of algebraic cycles , J. Algebraic Geom. 10 (2001), 299-363. · Zbl 1077.14509
[31] M. Levine, K-theory and motivic cohomology of schemes , preprint, 1999, .
[32] S. Lichtenbaum, “Values of zeta-functions, étale cohomology, and algebraic K-theory” in Algebraic K-theory, II: “Classical” Algebraic K-Theory and Connections with Arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) , Lecture Notes in Math. 342 , Springer, Berlin, 1973, 489-501. · Zbl 0284.12005
[33] S. Lichtenbaum, “Values of zeta-functions at nonnegative integers” in Number Theory (Noordwijkerhout, 1983) , Lecture Notes in Math. 1068 , Springer, Berlin, 1984, 127-138. · Zbl 0591.14014
[34] S. Lichtenbaum, The Weil-étale topology on schemes over finite fields , Compos. Math. 141 (2005), 689-702. · Zbl 1073.14024
[35] S. Lichtenbaum, The Weil-étale topology for number rings , Ann. of Math. (2) 170 (2009), 657-683. · Zbl 1278.14029
[36] Q. Liu, Algebraic Geometry and Arithmetic Curves , Oxf. Grad. Texts Math. 6 , Oxford Univ. Press, Oxford, 2002. · Zbl 0996.14005
[37] J. S. Milne, Arithmetic Duality Theorems , Perspect. Math. 1 , Academic Press, Boston, 1986. · Zbl 0613.14019
[38] B. Morin, On the Weil-étale cohomology of number fields , Trans. Amer. Math. Soc. 363 (2011), no. 9, 4877-4927. · Zbl 1233.14016
[39] B. Morin, The Weil-étale fundamental group of a number field II , Selecta Math. (N.S.) 17 (2011), 67-137. · Zbl 1247.14015
[40] J. Nekovář, “Beĭlinson’s conjectures” in Motives (Seattle, Wash., 1991) , Proc. Sympos. Pure Math. 55 , Amer. Math. Soc., Providence, 1994, 537-570.
[41] J. Rognes and C. Weibel, Two-primary algebraic \(K\)-theory of rings of integers in number fields , with Appendix A by M. Kolster, J. Amer. Math. Soc. 13 (2000), 1-54. · Zbl 0934.19001
[42] C. Soulé, K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale , Invent. Math. 55 (1979), 251-295. · Zbl 0437.12008
[43] C. Soulé, Groupes de Chow et \(K\)-théorie de variétés sur un corps fini , Math. Ann. 268 (1984), 317-345. · Zbl 0573.14001
[44] C. Soulé, “\(K\)-théorie et zéros aux points entiers de fonctions zêta” in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) , PWN, Warsaw, 1984, 437-445. · Zbl 0574.14010
[45] R. G. Swan, A new method in fixed point theory , Comment. Math. Helv. 34 (1960), 1-16. · Zbl 0144.22602
[46] J.-L. Verdier, Des catégories dérivées des catégories abéliennes , Astérisque 239 , Soc. Math. France, Paris, 1996. · Zbl 0882.18010
[47] V. Voevodsky, On motivic cohomology with \(\textbf{Z}/l\)-coefficients , Ann. of Math. (2) 174 (2011), 401-438. · Zbl 1236.14026
[48] C. Weibel, “Algebraic \(K\)-theory of rings of integers in local and global fields” in Handbook of \(K\)-Theory, I , Springer, Berlin, 139-190. · Zbl 1097.19003
[49] G. Wiesend, Class field theory for arithmetic schemes , Math. Z. 256 (2007), 717-729. · Zbl 1115.14016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.