×

zbMATH — the first resource for mathematics

Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level. (English) Zbl 1290.81151
Summary: SAMURAI is a tool for the automated numerical evaluation of one-loop corrections to any scattering amplitudes within the dimensional-regularization scheme. It is based on the decomposition of the integrand according to the OPP-approach, extended to accommodate an implementation of the generalized \(d\)-dimensional unitarity-cuts technique, and uses a polynomial interpolation exploiting the Discrete Fourier Transform. SAMURAI can process integrands written either as numerator of Feynman diagrams or as product of tree-level amplitudes. We discuss some applications, among which the 6-and 8-photon scattering in QED, and the 6-quark scattering in QCD. SAMURAI has been implemented as a Fortran90 library, publicly available, and it could be a useful module for the systematic evaluation of the virtual corrections oriented towards automating next-to-leading order calculations relevant for the LHC phenomenology.

MSC:
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81V22 Unified quantum theories
81U05 \(2\)-body potential quantum scattering theory
81T18 Feynman diagrams
81V10 Electromagnetic interaction; quantum electrodynamics
81V05 Strong interaction, including quantum chromodynamics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Stelzer, T.; Long, WF, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun., 81, 357, (1994)
[2] Maltoni, F.; Stelzer, T., Madevent: automatic event generation with madgraph, JHEP, 02, 027, (2003)
[3] Alwall, J.; etal., Madgraph/madevent v4: the new web generation, JHEP, 09, 028, (2007)
[4] CompHEP collaboration; Boos, E.; etal., Comphep 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth., A 534, 250, (2004)
[5] A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
[6] Gleisberg, T.; etal., SHERPA 1.alpha, a proof-of-concept version, JHEP, 02, 056, (2004)
[7] Gleisberg, T.; etal., Event generation with SHERPA 1.1, JHEP, 02, 007, (2009)
[8] W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
[9] Mangano, ML; Moretti, M.; Piccinini, F.; Pittau, R.; Polosa, AD, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP, 07, 001, (2003)
[10] Kanaki, A.; Papadopoulos, CG, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun., 132, 306, (2000)
[11] Cafarella, A.; Papadopoulos, CG; Worek, M., Helac-phegas: a generator for all parton level processes, Comput. Phys. Commun., 180, 1941, (2009)
[12] Campbell, JM; Ellis, RK, An update on vector boson pair production at hadron colliders, Phys. Rev., D 60, 113006, (1999)
[13] Campbell, JM; Ellis, RK, Next-to-leading order corrections to \(W\)\^{}{+} 2 jet and \(Z\)\^{}{+} 2 jet production at hadron colliders, Phys. Rev., D 65, 113007, (2002)
[14] Nagy, Z., Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev., D 68, 094002, (2003)
[15] Frixione, S.; Webber, BR, Matching NLO QCD computations and parton shower simulations, JHEP, 06, 029, (2002)
[16] S. Frixione and B.R. Webber, The MC@NLO 3.3 event generator, hep-ph/0612272 [SPIRES].
[17] Nason, P., A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP, 11, 040, (2004)
[18] Nason, P.; Ridolfi, G., A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP, 08, 077, (2006)
[19] Latunde-Dada, O.; Gieseke, S.; Webber, B., A positive-weight next-to-leading-order Monte Carlo for \(e\)\^{}{+}\(e\)\^{}{−} annihilation to hadrons, JHEP, 02, 051, (2007)
[20] Frixione, S.; Nason, P.; Ridolfi, G., A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP, 09, 126, (2007)
[21] Alioli, S.; Nason, P.; Oleari, C.; Re, E., NLO vector-boson production matched with shower in POW HEG, JHEP, 07, 060, (2008)
[22] Hamilton, K.; Richardson, P.; Tully, J., A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production, JHEP, 10, 015, (2008)
[23] Alioli, S.; Nason, P.; Oleari, C.; Re, E., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP, 06, 043, (2010)
[24] Giele, WT; Glover, EWN, Higher order corrections to jet cross-sections in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Phys. Rev., D 46, 1980, (1992)
[25] Ellis, RK; Ross, DA; Terrano, AE, The perturbative calculation of jet structure in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Nucl. Phys., B 178, 421, (1981)
[26] Kunszt, Z.; Soper, DE, Calculation of jet cross-sections in hadron collisions at order alpha-S\^{}{3}, Phys. Rev., D 46, 192, (1992)
[27] Frixione, S.; Kunszt, Z.; Signer, A., Three jet cross-sections to next-to-leading order, Nucl. Phys., B 467, 399, (1996)
[28] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[29] Catani, S.; Dittmaier, S.; Seymour, MH; Trócsányi, Z., The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys., B 627, 189, (2002)
[30] Gleisberg, T.; Krauss, F., Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J., C 53, 501, (2008)
[31] M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
[32] Czakon, M.; Papadopoulos, CG; Worek, M., Polarizing the dipoles, JHEP, 08, 085, (2009)
[33] K. Hasegawa, S. Moch and P. Uwer, AutoDipole - automated generation of dipole subtraction terms, arXiv:0911.4371 [SPIRES].
[34] Frederix, R.; Gehrmann, T.; Greiner, N., Automation of the dipole subtraction method in madgraph/madevent, JHEP, 09, 122, (2008)
[35] Frederix, R.; Frixione, S.; Maltoni, F.; Stelzer, T., Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP, 10, 003, (2009)
[36] Frederix, R.; Gehrmann, T.; Greiner, N., Integrated dipoles with maddipole in the madgraph framework, JHEP, 06, 086, (2010)
[37] Kosower, DA, Antenna factorization of gauge-theory amplitudes, Phys. Rev., D 57, 5410, (1998)
[38] Campbell, JM; Cullen, MA; Glover, EWN, Four jet event shapes in electron positron annihilation, Eur. Phys. J., C 9, 245, (1999)
[39] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Antenna subtraction at NNLO, JHEP, 09, 056, (2005)
[40] Daleo, A.; Gehrmann, T.; Maître, D., Antenna subtraction with hadronic initial states, JHEP, 04, 016, (2007)
[41] Denner, A.; Dittmaier, S., Reduction schemes for one-loop tensor integrals, Nucl. Phys., B 734, 62, (2006)
[42] Denner, A.; Dittmaier, S.; Roth, M.; Wieders, LH, Electroweak corrections to charged-current \(e\)\^{}{+}\(e\)\^{}{−} → 4 fermion processes: technical details and further results, Nucl. Phys., B 724, 247, (2005)
[43] Berger, CF; etal., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett., 102, 222001, (2009)
[44] Berger, CF; etal., Next-to-leading order QCD predictions for W+3-jet distributions at hadron colliders, Phys. Rev., D 80, 074036, (2009)
[45] Ellis, RK; Melnikov, K.; Zanderighi, G., Generalized unitarity at work: first NLO QCD results for hadronic \(W\)\^{}{+} 3jet production, JHEP, 04, 077, (2009)
[46] Keith Ellis, R.; Melnikov, K.; Zanderighi, G., \(W\)+3 jet production at the tevatron, Phys. Rev., D 80, 094002, (2009)
[47] C.F. Berger et al., Next-to-leading order QCD predictions for Z, γ\^{}{+3}-jet distributions at the Tevatron, arXiv:1004.1659 [SPIRES].
[48] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to \( pp → t\bar{t}b\bar{b} + X \) at the LHC, Phys. Rev. Lett., 103, 012002, (2009)
[49] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP, 03, 021, (2010)
[50] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Pittau, R.; Worek, M., A ssault on the NLO wishlist: ppttbb, JHEP, 09, 109, (2009)
[51] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Worek, M., Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \( pp → t\bar{t} + 2 \) jets at next-to-leading order, Phys. Rev. Lett., 104, 162002, (2010)
[52] Binoth, T.; etal., Next-to-leading order QCD corrections to \( pp → b\bar{b}b\bar{b} + X \) at the LHC: the quark induced case, Phys. Lett., B 685, 293, (2010)
[53] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys., B 725, 275, (2005)
[54] Britto, R.; Buchbinder, E.; Cachazo, F.; Feng, B., One-loop amplitudes of gluons in SQCD, Phys. Rev., D 72, 065012, (2005)
[55] Britto, R.; Feng, B.; Mastrolia, P., The cut-constructible part of QCD amplitudes, Phys. Rev., D 73, 105004, (2006)
[56] Mastrolia, P., On triple-cut of scattering amplitudes, Phys. Lett., B 644, 272, (2007)
[57] Forde, D., Direct extraction of one-loop integral coefficients, Phys. Rev., D 75, 125019, (2007)
[58] Bjerrum-Bohr, NEJ; Dunbar, DC; Perkins, WB, Analytic structure of three-mass triangle coefficients, JHEP, 04, 038, (2008)
[59] W.B. Kilgore, One-loop integral coefficients from generalized unitarity, arXiv:0711.5015 [SPIRES].
[60] Badger, SD, Direct extraction of one loop rational terms, JHEP, 01, 049, (2009)
[61] Mastrolia, P., Double-cut of scattering amplitudes and stokes’ theorem, Phys. Lett., B 678, 246, (2009)
[62] Mastrolia, P., Unitarity-cuts and berry’s phase, Lett. Math. Phys., 91, 199, (2010)
[63] Berger, CF; Duca, V.; Dixon, LJ, Recursive construction of Higgs+multiparton loop amplitudes: the last of the \(ϕ\)-nite loop amplitudes, Phys. Rev., D 74, 094021, (2006)
[64] Badger, SD; Glover, EWN, One-loop helicity amplitudes for H → gluons: the all-minus configuration, Nucl. Phys. Proc. Suppl., 160, 71, (2006)
[65] Badger, SD; Glover, EWN; Risager, K., One-loop ϕ-MHV amplitudes using the unitarity bootstrap, JHEP, 07, 066, (2007)
[66] Glover, EWN; Mastrolia, P.; Williams, C., One-loop ϕ-MHV amplitudes using the unitarity bootstrap: the general helicity case, JHEP, 08, 017, (2008)
[67] Badger, S.; Nigel Glover, EW; Mastrolia, P.; Williams, C., One-loop Higgs plus four gluon amplitudes: full analytic results, JHEP, 01, 036, (2010)
[68] Dixon, LJ; Sofianatos, Y., Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP, 08, 058, (2009)
[69] Badger, S.; Campbell, JM; Ellis, RK; Williams, C., Analytic results for the one-loop NMHV hqqgg amplitude, JHEP, 12, 035, (2009)
[70] Passarino, G.; Veltman, MJG, One loop corrections for \(e\)\^{}{+}\(e\)\^{}{−} annihilation into \(μ\)\^{}{+}\(μ\)\^{}{−} in the Weinberg model, Nucl. Phys., B 160, 151, (1979)
[71] ’t Hooft, G.; Veltman, MJG, Scalar one loop integrals, Nucl. Phys., B 153, 365, (1979)
[72] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[73] Binoth, T.; Guillet, JP; Heinrich, G.; Pilon, E.; Reiter, T., Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun., 180, 2317, (2009)
[74] A. Lazopoulos, Multi-gluon one-loop amplitudes numerically, arXiv:0812.2998 [SPIRES].
[75] J.-C. Winter and W.T. Giele, Calculating gluon one-loop amplitudes numerically, arXiv:0902.0094 [SPIRES].
[76] Berger, CF; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[77] Giele, WT; Zanderighi, G., On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP, 06, 038, (2008)
[78] Hameren, A.; Papadopoulos, CG; Pittau, R., Automated one-loop calculations: a proof of concept, JHEP, 09, 106, (2009)
[79] Aguila, F.; Pittau, R., Recursive numerical calculus of one-loop tensor integrals, JHEP, 07, 017, (2004)
[80] Ossola, G.; Papadopoulos, CG; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys., B 763, 147, (2007)
[81] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys., B 425, 217, (1994)
[82] C.F. Berger and D. Forde, Multi-parton scattering amplitudes via on-shell methods, arXiv:0912.3534 [SPIRES].
[83] Mahlon, G., One loop multi-photon helicity amplitudes, Phys. Rev., D 49, 2197, (1994)
[84] Bern, Z.; Morgan, AG, Massive loop amplitudes from unitarity, Nucl. Phys., B 467, 479, (1996)
[85] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., D-dimensional unitarity cut method, Phys. Lett., B 645, 213, (2007)
[86] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP, 03, 111, (2007)
[87] Giele, WT; Kunszt, Z.; Melnikov, K., Full one-loop amplitudes from tree amplitudes, JHEP, 04, 049, (2008)
[88] Ellis, RK; Giele, WT; Kunszt, Z.; Melnikov, K., Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys., B 822, 270, (2009)
[89] Ossola, G.; Papadopoulos, CG; Pittau, R., Numerical evaluation of six-photon amplitudes, JHEP, 07, 085, (2007)
[90] Bern, Z.; Dixon, LJ; Kosower, DA, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev., D 73, 065013, (2006)
[91] Ossola, G.; Papadopoulos, CG; Pittau, R., On the rational terms of the one-loop amplitudes, JHEP, 05, 004, (2008)
[92] Draggiotis, P.; Garzelli, MV; Papadopoulos, CG; Pittau, R., Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP, 04, 072, (2009)
[93] Garzelli, MV; Malamos, I.; Pittau, R., Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP, 01, 040, (2010)
[94] Mastrolia, P.; Ossola, G.; Papadopoulos, CG; Pittau, R., Optimizing the reduction of one-loop amplitudes, JHEP, 06, 030, (2008)
[95] Ellis, RK; Zanderighi, G., Scalar one-loop integrals for QCD, JHEP, 02, 002, (2008)
[96] T. Binoth et al., NLO cross sections for the LHC using GOLEM: status and prospects, PoS(RADCOR2009)026 [arXiv:1001.4905] [SPIRES].
[97] SM and NLO Multileg Working Group collaboration, J.R. Andersen et al., The SM and NLO multileg working group: Summary report, arXiv:1003.1241 [SPIRES].
[98] Binoth, T.; etal., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun., 181, 1612, (2010)
[99] K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, arXiv:1004.3284 [SPIRES].
[100] Pittau, R., A simple method for multi-leg loop calculations, Comput. Phys. Commun., 104, 23, (1997)
[101] Kleiss, R.; Stirling, WJ; Ellis, SD, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun., 40, 359, (1986)
[102] Gounaris, GJ; Porfyriadis, PI; Renard, FM, The γγ → γγprocess in the standard and SUSY models at high energies, Eur. Phys. J., C 9, 673, (1999)
[103] C. Bernicot, Light-light amplitude from generalized unitarity in massive QED, arXiv:0804.0749 [SPIRES].
[104] Nagy, Z.; Soper, DE, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev., D 74, 093006, (2006)
[105] Binoth, T.; Heinrich, G.; Gehrmann, T.; Mastrolia, P., Six-photon amplitudes, Phys. Lett., B 649, 422, (2007)
[106] Gong, W.; Nagy, Z.; Soper, DE, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev., D 79, 033005, (2009)
[107] Bernicot, C.; Guillet, JP, Six-photon amplitudes in scalar QED, JHEP, 01, 059, (2008)
[108] C. Bernicot, The six-photon amplitude, arXiv:0804.1315 [SPIRES].
[109] Binoth, T.; Guillet, JP; Heinrich, G., Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP, 02, 013, (2007)
[110] Badger, S.; Bjerrum-Bohr, NEJ; Vanhove, P., Simplicity in the structure of QED and gravity amplitudes, JHEP, 02, 038, (2009)
[111] Altarelli, G.; Ellis, RK; Martinelli, G., Leptoproduction and Drell-Yan processes beyond the leading approximation in chromodynamics, Nucl. Phys., B 143, 521, (1978)
[112] Altarelli, G.; Ellis, RK; Martinelli, G., Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys., B 157, 461, (1979)
[113] Harris, BW; Laenen, E.; Phaf, L.; Sullivan, Z.; Weinzierl, S., The fully differential single top quark cross-section in next to leading order QCD, Phys. Rev., D 66, 054024, (2002)
[114] Bern, Z.; Dixon, LJ; Kosower, DA, One-loop amplitudes for \(e\)\^{}{+}\(e\)\^{}{−} to four partons, Nucl. Phys., B 513, 3, (1998)
[115] Z. Bern, L.J. Dixon and D.A. Kosower, New QCD results from string theory, hep-th/9311026 [SPIRES].
[116] Bern, Z.; Chalmers, G.; Dixon, LJ; Kosower, DA, One loop N gluon amplitudes with maximal helicity violation via collinear limits, Phys. Rev. Lett., 72, 2134, (1994)
[117] Brandhuber, A.; McNamara, S.; Spence, BJ; Travaglini, G., Loop amplitudes in pure Yang-Mills from generalised unitarity, JHEP, 10, 011, (2005)
[118] Badger, SD; Glover, EWN; Khoze, VV; Svrček, P., Recursion relations for gauge theory amplitudes with massive particles, JHEP, 07, 025, (2005)
[119] Binoth, T.; Ossola, G.; Papadopoulos, CG; Pittau, R., NLO QCD corrections to tri-boson production, JHEP, 06, 082, (2008)
[120] Actis, S.; Mastrolia, P.; Ossola, G., NLO QED corrections to hard-bremsstrahlung emission in Bhabha scattering, Phys. Lett., B 682, 419, (2010)
[121] Nogueira, P., Automatic Feynman graph generation, J. Comput. Phys., 105, 279, (1993)
[122] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
[123] Reiter, T., Optimising code generation with haggies, Comput. Phys. Commun., 181, 1301, (2010)
[124] T. Reiter, Automated evaluation of one-loop six-point processes for the LHC, arXiv:0903.0947 [SPIRES].
[125] Kretzer, S.; Lai, HL; Olness, FI; Tung, WK, CTEQ6 parton distributions with heavy quark mass effects, Phys. Rev., D 69, 114005, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.