×

zbMATH — the first resource for mathematics

Analysis of fractal wave equations by local fractional Fourier series method. (English) Zbl 1291.35123
Summary: The fractal wave equations with local fractional derivatives are investigated in this paper. The analytical solutions are obtained by using local fractional Fourier series method. The present method is very efficient and accurate to process a class of local fractional differential equations.

MSC:
35L05 Wave equation
35R11 Fractional partial differential equations
Software:
FODE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. · Zbl 1206.26007 · doi:10.1016/S0304-0208(06)80001-0
[2] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010. · Zbl 1222.26015 · doi:10.1142/9781848163300 · eudml:219561
[3] J. Klafter, S. C. Lim, and R. Metzler, Fractional Dynamics in Physics: Recent Advances, World Scientific, Singapore, 2012. · Zbl 1260.60163 · doi:10.1155/2012/427383
[4] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, UK, 2008. · Zbl 1257.65071 · doi:10.1007/s11446-008-3011-6
[5] D. Baleanu, J. A. Tenreiro Machado, and A. C. J. Luo, Fractional Dynamics and Control, Springer, New York, NY, USA, 2012. · Zbl 1247.97021 · doi:10.1007/978-94-007-2129-6_9
[6] J. A. Tenreiro Machado, A. C. J. Luo, and D. Baleanu, Nonlinear Dynamics of Complex Systems: Applications in Physical, Biological and Financial Systems, Springer, New York, NY, USA, 2011. · Zbl 1228.37001
[7] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[8] S. A. El-Wakil, M. A. Madkour, and M. A. Abdou, “Application of Exp-function method for nonlinear evolution equations with variable coefficients,” Physics Letters A, vol. 369, no. 1-2, pp. 62-69, 2007. · Zbl 1209.81097 · doi:10.1016/j.physleta.2007.04.075
[9] S. Das, “Analytical solution of a fractional diffusion equation by variational iteration method,” Computers & Mathematics with Applications, vol. 57, no. 3, pp. 483-487, 2009. · Zbl 1165.35398 · doi:10.1016/j.camwa.2008.09.045
[10] S. Momani and Z. Odibat, “Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 910-919, 2007. · Zbl 1141.65398 · doi:10.1016/j.camwa.2006.12.037
[11] S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, “Some relatively new techniques for nonlinear problems,” Mathematical Problems in Engineering, vol. 2009, Article ID 234849, 25 pages, 2009. · Zbl 1184.35280 · doi:10.1155/2009/234849 · eudml:45810
[12] H. Jafari and S. Seifi, “Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2006-2012, 2009. · Zbl 1221.65278 · doi:10.1016/j.cnsns.2008.05.008
[13] J. Hristov, “Heat-balance integral to fractional (half-time) heat diffusion sub-model,” Thermal Science, vol. 14, no. 2, pp. 291-316, 2010. · doi:10.2298/TSCI1002291H
[14] G.-c. Wu and E. W. M. Lee, “Fractional variational iteration method and its application,” Physics Letters A, vol. 374, no. 25, pp. 2506-2509, 2010. · Zbl 1237.34007 · doi:10.1016/j.physleta.2010.04.034
[15] Y. Khan, N. Faraz, A. Yildirim, and Q. Wu, “Fractional variational iteration method for fractional initial-boundary value problems arising in the application of nonlinear science,” Computers & Mathematics with Applications, vol. 62, no. 5, pp. 2273-2278, 2011. · Zbl 1231.35288 · doi:10.1016/j.camwa.2011.07.014
[16] Z. Zhao and C. Li, “Fractional difference/finite element approximations for the time-space fractional telegraph equation,” Applied Mathematics and Computation, vol. 219, no. 6, pp. 2975-2988, 2012. · Zbl 1309.65101 · doi:10.1016/j.amc.2012.09.022
[17] W. Deng, “Finite element method for the space and time fractional Fokker-Planck equation,” SIAM Journal on Numerical Analysis, vol. 47, no. 1, pp. 204-226, 2008. · Zbl 1416.65344 · doi:10.1137/080714130
[18] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific, Hackensack, NJ, USA, 2012. · Zbl 1248.26011 · doi:10.1142/9789814355216
[19] X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic, Hong Kong, China, 2011.
[20] X. J. Yang, “Local fractional integral transforms,” Progress in Nonlinear Science, vol. 4, pp. 1-225, 2011.
[21] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science, New York, NY, USA, 2012.
[22] K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214-217, 1998. · Zbl 0945.82005 · doi:10.1103/PhysRevLett.80.214
[23] A. Carpinteri and A. Sapora, “Diffusion problems in fractal media defined on Cantor sets,” ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 90, no. 3, pp. 203-210, 2010. · Zbl 1187.80011 · doi:10.1002/zamm.200900376
[24] G. Jumarie, “Probability calculus of fractional order and fractional Taylor’s series application to Fokker-Planck equation and information of non-random functions,” Chaos, Solitons and Fractals, vol. 40, no. 3, pp. 1428-1448, 2009. · Zbl 1197.60039 · doi:10.1016/j.chaos.2007.09.028
[25] Y. Khan, Q. Wu, N. Faraz, A. Yildirim, and M. Madani, “A new fractional analytical approach via a modified Riemann-Liouville derivative,” Applied Mathematics Letters, vol. 25, no. 10, pp. 1340-1346, 2012. · Zbl 1251.65101 · doi:10.1016/j.aml.2011.11.041
[26] Y. Khan, N. Faraz, S. Kumar, and A. Yildirim, “A coupling method of homotopy perturbation and Laplace transformation for fractional models,” “Politehnica” University of Bucharest, vol. 74, no. 1, pp. 57-68, 2012. · Zbl 1245.65143
[27] M. S. Hu, D. Baleanu, and X. J. Yang, “One-phase problems for discontinuous heat transfer in fractal media,” Mathematical Problems in Engineering, vol. 2013, Article ID 358473, 3 pages, 2013. · Zbl 1296.80006 · doi:10.1155/2013/358473
[28] W.-H. Su, X.-J. Yang, H. Jafari, and D. Baleanu, “Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator,” Advances in Difference Equations, vol. 2013, article 97, 2013. · Zbl 1380.35163 · doi:10.1186/1687-1847-2013-97
[29] X. J. Yang and D. Baleanu, “Fractal heat conduction problem solved by local fractional variation iteration method,” Thermal Science, vol. 17, no. 2, pp. 625-628, 2013.
[30] W.-H. Su, D. Baleanu, X.-J. Yang, and H. Jafari, “Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method,” Fixed Point Theory and Applications, vol. 2013, article 89, 2013. · Zbl 1291.74083 · doi:10.1186/1687-1812-2013-89
[31] Y. J. Yang, D. Baleanu, and X. J. Yang, “A local fractional variational iteration method for Laplace equation within local fractional operators,” Abstract and Applied Analysis, vol. 2013, Article ID 202650, 6 pages, 2013. · Zbl 1273.65158 · doi:10.1155/2013/202650
[32] M.-S. Hu, R. P. Agarwal, and X.-J. Yang, “Local fractional Fourier series with application to wave equation in fractal vibrating string,” Abstract and Applied Analysis, vol. 2012, Article ID 567401, 15 pages, 2012. · Zbl 1257.35193 · doi:10.1155/2012/567401
[33] Y. Zhang, A. Yang, and X. J. Yang, “1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method,” Thermal Science, 2013. · doi:10.2298/TSCI130303041Z
[34] G. A. Anastassiou and O. Duman, In Applied Mathematics and Approximation Theory, Springer, New York, NY, USA, 2013. · Zbl 1264.00039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.