×

zbMATH — the first resource for mathematics

Critical collapse of scalar fields beyond axisymmetry. (English) Zbl 1291.83141
Summary: We investigate non-spherically symmetric, scalar field collapse of a family of initial data consisting of a spherically symmetric profile with a deformation proportional to the real part of the spherical harmonic \(Y_{21}(\theta,\varphi)\). Independent of the strength of the anisotropy in the data, we find that supercritical collapse yields a black hole mass scaling \(M_h\propto(p-p^\ast)^\gamma\) with \(\gamma\approx 0.37\), a value remarkably close to the critical exponent obtained by Choptuik in his pioneering study in spherical symmetry. We also find hints of discrete self-similarity. However, the collapse experiments are not sufficiently close to the critical solution to unequivocally claim that the detected periodicity is from critical collapse echoing.

MSC:
83C57 Black holes
83-08 Computational methods for problems pertaining to relativity and gravitational theory
83C75 Space-time singularities, cosmic censorship, etc.
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abrahams, A.M., Evans, C.R.: Critical behavior and scaling in vacuum axisymmetric gravitational collapse. Phys. Rev. Lett. 70, 2980-2983 (1993). doi:10.1103/PhysRevLett.70.2980
[2] Baker, J.G., Centrella, J., Choi, D.I., Koppitz, M., van Meter, J.: Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96(11), 111 (2006). doi:10.1103/PhysRevLett.96.111102
[3] Bode, T; Haas, R; Bogdanovic, T; Laguna, P; Shoemaker, D, Relativistic mergers of supermassive black holes and their electromagnetic signatures, Astrophys. J., 715, 1117-1131, (2010)
[4] Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96(11), 111 (2006). doi:10.1103/PhysRevLett.96.111101
[5] Choptuik, M.W.: Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9-12 (1993). doi:10.1103/PhysRevLett.70.9
[6] Choptuik, MW; Hirschmann, EW; Liebling, SL; Pretorius, F, Critical collapse of the massless scalar field in axisymmetry, Phys. Rev. D, 68, 044007, (2003) · Zbl 1244.83004
[7] Gundlach, C; Martín-García, JM, Critical phenomena in gravitational collapse, Living Rev. Relat., 10, 5, (2007) · Zbl 1175.83037
[8] Hilditch, D; Baumgarte, TW; Weyhausen, A; Dietrich, T; Brügmann, B; Montero, PJ; Müller, E, Collapse of nonlinear gravitational waves in moving-puncture coordinates, Phys. Rev. D, 88, 103009, (2013)
[9] Husa, S; Hinder, I; Lechner, C, Kranc: a Mathematica application to generate numerical codes for tensorial evolution equations, Comput. Phys. Commun., 174, 983-1004, (2006) · Zbl 1196.68327
[10] Löffler, F., Faber, J., Bentivegna, E., Bode, T., Diener, P., Haas, R., Hinder, I., Mundim, B.C., Ott, C.D., Schnetter, E., Allen, G., Campanelli, M., Laguna, P.: The Einstein toolkit: a community computational infrastructure for relativistic astrophysics. ArXiv e-prints (2011) · Zbl 1247.83003
[11] Martín-García, JM; Gundlach, C, All nonspherical perturbations of the choptuik spacetime decay, Phys. Rev. D, 59, 064031, (1999)
[12] Olabarrieta, I; Ventrella, JF; Choptuik, MW; Unruh, WG, Critical behavior in the gravitational collapse of a scalar field with angular momentum in spherical symmetry, Phys. Rev. D, 76, 124014, (2007)
[13] Sorkin, E, On critical collapse of gravitational waves, Class. Quantum Gravity, 28, 025,011, (2011) · Zbl 1207.83041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.