×

Spectral functions, special functions and the Selberg zeta function. (English) Zbl 0631.10025

The author starts from an arbitrary sequence \((\lambda_k)_{k\geq 1}\) of positive real numbers such that \(\lambda_k\to \infty\) which is subject to suitable regularity conditions. (Typically, \((\lambda_k)_{k\geq 1}\) will be the spectrum of a differential operator or a number-theoretically defined sequence.) Then he forms the associated \(\theta\)-series, the Fredholm determinant, the zeta-function and the functional determinant and he discusses the relations between these functions by means of regularization techniques. In particular, he establishes a very general relation between the functional determinant and the Fredholm determinant.
The results apply to a wide variety of examples covering many classical situations from mathematics and theoretical physics. In particular, the spectral sequence of the Laplacian on the two-dimensional sphere is related with the Barnes \(G\)-function. The main application is an explicit factorization of the Selberg zeta-function into two functional determinants, one of which is expressible in terms of the Barnes \(G\)-function. Relations with some recent results on the Selberg zeta-function are also established.

MSC:

11M36 Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas)
35P99 Spectral theory and eigenvalue problems for partial differential equations
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
58J52 Determinants and determinant bundles, analytic torsion
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
Full Text: DOI

References:

[1] D’Hoker, E., Phong, D. H.: (a) Multiloop amplitudes for the bosonic Polyakov string. Nucl. Phys.B269, 205-234 (1986) · doi:10.1016/0550-3213(86)90372-X
[2] (b) On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys.104, 537-545 (1986) · Zbl 0599.30073 · doi:10.1007/BF01211063
[3] Ray, D., Singer, I. M.: Ann. Math.98, 154-177 (1973) · Zbl 0267.32014 · doi:10.2307/1970909
[4] Donnelly, H.: Am. J. Math.101, 1365-1379 (1979) · Zbl 0425.53034 · doi:10.2307/2374146
[5] Fried, D.: Invent. Math.84, 523-540 (1986) · Zbl 0621.53035 · doi:10.1007/BF01388745
[6] Widder, D.: The Laplace Transform (Chap. V), Princeton. NJ: Princeton University Press 1946 · Zbl 0060.24801
[7] Duistermaat, H., Guillemin, V. W.: Invent. Math.29, 39-79 (1975) · Zbl 0307.35071 · doi:10.1007/BF01405172
[8] Voros, A.: in: The Riemann problem.... Chudnovsky, D., Chudnovsky, G. (eds.) Lecture Notes in Mathematics Vol.925. Berlin, Heidelberg, New York: Springer 1982
[9] Voros, A.: The return of the quartic oscillator. The complex WKB method. Ann. Inst. H. Poincaré39A, 211-338 (1983) (especially Sects. 4, 10 and Appendices A, C, D) · Zbl 0526.34046
[10] Hille, E.: Analytic function theory, Vol. I, Chap. 8.7 and Vol.II, Chap. 14, Blaisdell 1962-1963 · Zbl 0102.29401
[11] Gelfand, I. M., Shilov, G. E.: Generalized functions Vol.1. New York: Academic Press 1964
[12] Seeley, R.: AMS Proc. Symp. Pure Math.10, 288-307 (1966)
[13] Gelfand, I. M., Levitan, B. M.: Dokl. Akad. Nauk. SSSR88, 593-596 (1953), Dikii, L. A.: Usp. Math. Nauk13, 111-143 (1958) (Translations AMS Series 218, 81-115)
[14] Barnes, E. W.: Q. J. Math.31, 264-314 (1900)
[15] Whittaker, E. T., Watson, G. N.: A course of modern analysis, Cambridge: Cambridge University Press 1965 · JFM 45.0433.02
[16] Erdelyi et al.: Higher transcendental functions Vol.1, Chap. 1 (Bateman Manuscript Project), New York: McGraw Hill 1953
[17] Selberg, A.: J. Ind. Math. Soc.20, 47-87 (1956)
[18] Hejhal, D. A.: Duke Math. J.43, 441-482 (1976) · Zbl 0346.10010 · doi:10.1215/S0012-7094-76-04338-6
[19] Balazs, N. L., Voros, A.: Chaos on the Pseudosphere. Phys. Rep.143, 109-240 (1986) · doi:10.1016/0370-1573(86)90159-6
[20] Huber, H.: Math. Anal.138, 1-26 (1959) · Zbl 0089.06101 · doi:10.1007/BF01369663
[21] Belavin, A., Knizhnik, V.: JETP91, 364-390 (1986); Manin, YU.: JETP Lett.43, 161-163 (1986)
[22] Fried, D.: Invent. Math.84, 523-540 (1986) · Zbl 0621.53035 · doi:10.1007/BF01388745
[23] Kinkelin,: J. Reine Angew. Math. (Crelle)57, 122-138 (1860), Glaisher, J. W. L.: Messenger of Math.6, 71-76 (1877) and24, 1-16 (1894) · ERAM 057.1509cj · doi:10.1515/crll.1860.57.122
[24] Cartier, P.: Analyse numérique d’un problème de valeurs propres à haute précision (Application aux fonctions automorphes), IHES preprint (1978); Vigneras, M-F.: Astérique61, 235-249 (1979)
[25] Widom, H.: Indian Univ. Math. J.21, 277-283 (1971) · doi:10.1512/iumj.1971.21.21022
[26] Widom, H.: Am. J. Math.95, 333-383 (1973); McCoy, B., Wu, T. T.: The two-dimensional Ising model, Cambridge, MA; Harvard University Press 1973 (page 264 and Appendix B); Dyson, F. J.: Fredholm determinants and inverse scattering problems. Commun. Math. Phys.47, 171-183 (1976) · Zbl 0275.45006 · doi:10.2307/2373789
[27] Hardy, G. H.: Divergent Series, Clarendon Press, Oxford 1949 · Zbl 0032.05801
[28] Gradshteyn, I. S., Ryzhik, I. M.: Tables of integrals, series and products (Corrected and Enlarged Edition prepared by A. Jeffrey), New York: Academic Press 1980 · Zbl 0521.33001
[29] Lenard, A.: Pacific J. Math.42, 137-145 (1972)
[30] Olver, F. W. J.: Asymptotics and special functions (Chap. 8, Sects. 2.2 and 3.3). New York: Academic Press 1974
[31] Vardi, I.: Determinants of Laplacians and multiple gamma functions. Stanford Math. preprint (Sept. 1986), submitted to SIAM J. Math. Anal.; Weisberger, W. I.: Normalization of the path integral measure and the coupling constants for basonic strings, Nucl. Phys. B (in press) (1987)
[32] Elstrodt, J.: Jber. d. Dt. Math. Verein83, 45-77 (1981), Eq. (10.5)
[33] Randol, B.: Trans. AMS201, 241-246 (1975) · doi:10.1090/S0002-9947-1975-0369286-6
[34] Selberg, A.: Lectures 1953-1954 (unpublished; private communication of J. Elstrodt); Randol, B.: Trans. AMS233, 241-247 (1977); Elstrodt, J., Grunewald, F., Mennicke, J.: Elementary and analytic theory of numbers. Banach center publications17, 83-120 (1985) (Warsaw) · doi:10.1090/S0002-9947-1977-0482582-9
[35] Fischer, J.: Dissertation, Univ. Münster 1985 (and ?An Approach to the Selberg trace formula via the Selberg zeta function?, submitted to Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer)
[36] Sarnak, P.: Determinants of Laplacians, Comm. Math. Phys. (in press) (1987) · Zbl 0618.10023
[37] Balazs, N. L., Schmit, C., Voros, A.: Spectral fluctuations and zeta functions. Saclay preprint PhT/86-156. J. Stat. Phys. (to appear) (M. Kac memorial issue) · Zbl 0692.58027
[38] Voros, A.: Phys. Lett.B180, 245-246 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.