zbMATH — the first resource for mathematics

Unique continuation for some evolution equations. (English) Zbl 0631.35044
Let L be an evolution operator acting on functions defined on some connected open set \({\mathcal O}\) of \({\mathbb{R}}^{n+1}={\mathbb{R}}^ n_ x\times {\mathbb{R}}_ t\). L is said to have the unique continuation property if every solution u of \(Lu=0\) which vanishes one some nonempty open set \(\omega\) of \({\mathcal O}\) vanishes in the horizontal component of \(\omega\) in \({\mathcal O}\) which is the union of all open segments \(t=cons\tan t\) in \({\mathcal O}\) which contains a point of \(\omega\). In the first section of this paper the authors prove a unique continuation theorem when L is a second order parabolic equation with coefficients not always smooth. The proof is the application of extended Carleman estimates for second order elliptic operators. Next sections, they discuss the parabolic equations with \(\Delta^ m\) as principal part and a more general class of dispersive-dissipative equations.
Reviewer: Y.Ebihara

35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
35B60 Continuation and prolongation of solutions to PDEs
Full Text: DOI
[1] Bardos, C; Tartar, L, Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. rational mech. anal., 50, 10-25, (1973) · Zbl 0258.35039
[2] Hörmander, L, Linear partial differential operators, (1969), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0177.36401
[3] \scJ. P. Kernevez and J. L. Lions, Book in preparation.
[4] Lions, J.L, Contrôle des systèmes distribués singuliers, (1983), Gauthier-Villars Paris · Zbl 0514.93001
[5] Matsumoto, W, Une remarque sur l’unicité du prolongement des solutions pour LES systèmes mixtes de type parabolique et de type elliptique dégénéré, C. R. acad. sci. Paris, Sér. I, 292, 665-668, (1981) · Zbl 0476.35015
[6] Mizohata, S, Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques, Mem. coll. sci. univ. Kyoto, Sér. A, 31, 3, 219-239, (1958) · Zbl 0087.09303
[7] Nirenberg, L, Uniqueness in Cauchy problems for differential equatons with constant leading coefficients, Comm. pure appl. math., 10, 89-105, (1957) · Zbl 0077.09402
[8] Saut, J.C, Quelques généralisations de l’équation de Korteweg-de Vries II, J. differential equations, 33, 3, 320-335, (1979) · Zbl 0435.35067
[9] Saut, J.C; Scheurer, B, Sur l’unicité du problème de Cauchy et le prolongement unique pour des équations elliptiques à coefficients non localement bornés, J. differential equations, 43, 1, 28-43, (1982) · Zbl 0431.35017
[10] Saut, J.C; Scheurer, B, Remarques sur un théorème de prolongement unique de mizohata, C. R. acad. sci. Paris, ser. I, 296, 307-310, (1983) · Zbl 0555.35055
[11] Saut, J.C; Temam, R, Generic properties of Navier-Stokes equations: genericity with respect to the boundary values, Indiana math. J., 29, 427-446, (1980) · Zbl 0445.76023
[12] Trêves, F, Linear partial differential equations with constant coefficients, (1966), Gordon and Breach New York/London/Paris
[13] Watanabe, K, On the uniqueness of the Cauchy problem for certain elliptic operators with triple characteristics, Tôhoku math. J., 23, 473-490, (1971) · Zbl 0237.35032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.