zbMATH — the first resource for mathematics

Regularity of solutions to the Schrödinger equation. (English) Zbl 0631.42010
Dans cet article, l’A. montre en particulier le résultat suivant sur la régularité des solutions de l’équation de Schrödinger. Avec \(S_ t\) définie sur \({\mathcal S}({\mathbb{R}}^ n)\) par \((S_ tf)(x)=\int_{{\mathbb{R}}^ n}e^{ix\xi}e^{it\xi^ 2}\hat f(\xi)d\xi\) il montre que si \(n\geq 3\) et \(s>\) on a pour toute boule B \((\int_{B}| S^*f(x)|^{1/2}\leq C_ B\| f\|_{H^ s},\forall f\in {\mathcal S}({\mathbb{R}}^ n)\) ou \((S^*f)(x)=\sup_{0<t<1}| S_ tf(x)|.\) Ce résultat améliore des résultats antérieurs de Carleson, Dahlberg, Kenig, Ruiz, Cowling et Stein. Des variantes et des applications sont données.
Reviewer: B.Helffer

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
Full Text: DOI
[1] A. Carbery, Radial Fourier multipliers and associated maximal functions , Recent Progress in Fourier Analysis (El Escorial, 1983), North-Holland Mathematics Studies, vol. 111, North-Holland, Amsterdam, 1985, pp. 49-56. · Zbl 0632.42012
[2] L. Carleson, Some analytical problems related to statistical mechanics , Euclidean Harmonic Analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 5-45. · Zbl 0425.60091
[3] M. Cowling, Pointwise behavior of solutions to Schrödinger equations , Harmonic Analysis (Cortona, 1982), Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 83-90. · Zbl 0523.47015
[4] B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation , Harmonic Analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., vol. 908, Springer, Berlin, 1982, pp. 205-209. · Zbl 0519.35022
[5] C. E. Kenig and A. Ruiz, A strong type \((2,\,2)\) estimate for a maximal operator associated to the Schrödinger equation , Trans. Amer. Math. Soc. 280 (1983), no. 1, 239-246. JSTOR: · Zbl 0525.42011
[6] A. Miyachi, On some singular Fourier multipliers , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 2, 267-315. · Zbl 0469.42003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.