## A remark on regularization in Hilbert spaces.(English)Zbl 0631.49018

For u, a uniformly continuous function on a Hilbert space H and for $$\epsilon >0$$ define $\underline u_{\epsilon}(x)=\sup_{z\in H}\inf_{y\in H}[u(y)+(1/(2\epsilon))\| z-y\|^ 2- (1/\epsilon)\| z-x\|^ 2]\quad and$
$\bar u_{\epsilon}(x)=\inf_{z\in H}\sup_{y\in H}[u(y)- (1/(2\epsilon))\| z-y\|^ 2+(1/\epsilon)\| z-x\|^ 2].$ It is shown that $$u_{\epsilon}=\bar u_{\epsilon}$$ and $$u_{\epsilon}=\underline u_{\epsilon}$$ are in $$C^{1,1}$$, that they approximate u uniformly as $$\epsilon\downarrow 0$$ and have the properties $$\| \nabla u_{\epsilon}\|_{\infty}\leq c_{\epsilon}\| u\|_{\infty}$$, $$\| (\nabla u_{\epsilon}(x)-\nabla u_{\epsilon}(y))/| x-y| \|_{\infty}\leq c_{\epsilon}\| u\|_{\infty}$$, $$\inf_{H}u_{\epsilon}\leq u_{\epsilon}\leq \sup_{H}u$$, $$\| \nabla u_{\epsilon}\|_{\infty}\leq \| (u(x)-u(y))/| x-y| \|_{\infty}\leq \infty$$. The relations of the approximants to viscosity solutions of Hamilton Jacobi equations $$u_ t+()| \nabla u|^ 2=0$$ and $$u_ t-()| \nabla u|^ 2=0$$ are discussed. Of course in the infinite dimensional case approximants with the desired properties can be constructed by means of mollifiers.
Reviewer: P.Szeptycki

### MSC:

 49L99 Hamilton-Jacobi theories 35D05 Existence of generalized solutions of PDE (MSC2000) 49J45 Methods involving semicontinuity and convergence; relaxation

### Keywords:

viscosity solutions; Hamilton Jacobi equations
Full Text:

### References:

 [1] Barbu, V.; Da Prato, G., Hamilton-Jacobi Equations in Hilbert Spaces (1983), London: Pitman, London · Zbl 0508.34001 [2] Crandall, M. G.; Lions, P. L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277, 1-42 (1983) · Zbl 0599.35024 · doi:10.2307/1999343 [3] M. G. Crandall and P. L. Lions, in preparation. [4] Crandall, M. G.; Evans, L. C.; Lions, P. L., Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 282, 487-502 (1984) · Zbl 0543.35011 · doi:10.2307/1999247 [5] Ekeland, I.; Lasry, J. M., On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., 112, 238-319 (1980) · Zbl 0449.70014 · doi:10.2307/1971148 [6] Lions, P. L., Generalized Solutions of Hamilton-Jacobi Equations (1982), London: Pitman, London · Zbl 0497.35001 [7] Nemirovski, A. S.; Semenov, S. M., The polynomial approximation of functions in Hilbert spaces, Mat. Sb. (N.S.), 92, 134, 257-281 (1973) · Zbl 0286.41025 [8] A. Pommelet,Transformée de Toland et la théorie de Morse pour certaines fonctions non différentiables, Thèse de 3e cycle, Université Paris — Dauphine, 1984.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.