Gallant, A. Ronald; Nychka, Douglas W. Semi-nonparametric maximum likelihood estimation. (English) Zbl 0631.62110 Econometrica 55, 363-390 (1987). The density of Hermite forms: \[ h(u)=P^ 2_ k(u-\tau)\Phi^ 2(u| \tau,diag(\gamma)) \] where \(P_ k\) is a polynomial of degree K and \(\Phi\) is the density function of the multivariate normal distribution is shown to be capable of approximating any density arbitrarily closely subject to minimal qualifications relating to compactness, denseness, uniform convergence and identification defined over the parameter space. Reviewer: L.Podkaminer Cited in 4 ReviewsCited in 142 Documents MSC: 62P20 Applications of statistics to economics 62G05 Nonparametric estimation 62F10 Point estimation Keywords:semi-nonparametric maximum likelihood estimation; Hermite series; estimation of Stoker functionals; nonlinear regression; nonparametric; semi-parametric; sample selection; fitting econometric models; Hermite forms; multivariate normal distribution; compactness; denseness; uniform convergence; identification PDF BibTeX XML Cite \textit{A. R. Gallant} and \textit{D. W. Nychka}, Econometrica 55, 363--390 (1987; Zbl 0631.62110) Full Text: DOI Link OpenURL