zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Effects of parameter fluctuations on community survival. (English) Zbl 0631.92019
Authors’ abstract: This article focuses upon temporal fluctuations in demographic parameters and their role in determining survival of populations in a two-species community. First, persistence in a generic nonautonomous Lotka-Volterra model without specified interspecific interaction type is investigated. When additional hypotheses, including typical interaction classifications of predation, competition and cooperation, are imposed, extinction and additional persistence results are found. While only two-dimensional Lotka-Volterra models are discussed here, the methods are applicable to higher dimensional problems and to other types of models.
Reviewer: V.Sree Hari Rao

92D25Population dynamics (general)
Full Text: DOI
[1] Acevedo, M. F.: Nonequilibrium ecology: chronic and impulsive disturbances. Proceedings of the 10th annual conference of the society for general systems research 1, 72-81 (1981)
[2] Caswell, H.: Predator mediated coexistence: A nonequilibrium model. Amer. nat. 112, 127-154 (1978)
[3] Coleman, B. D.: Nonautonomous logistic equations as models of the adjustment of populations to environmental change. Math. biosci. 45, 159-176 (1979) · Zbl 0425.92013
[4] Coleman, B. D.; Hsieh, Y. -H.; Knowles, G. P.: On the optimal choice of r for a population in a periodic environment. Math. biosci. 46, 71-85 (1979) · Zbl 0429.92022
[5] Cushing, J. M.: Integrodifferential equations and delay models in population dynamics. Lecture notes in biomathematics 20 (1977) · Zbl 0363.92014
[6] Deangelis, D. L.; Post, W. M.; Travis, C. C.: Positive feedback in natural systems. Biomathematics 15 (1986) · Zbl 0594.92001
[7] Freedman, H. I.; Waltman, P.: Mathematical analysis of some three-species foodchain models. Math. biosci. 33, 257-276 (1977) · Zbl 0363.92022
[8] Freedman, H. I.; Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. biosci. 68, 213-231 (1984) · Zbl 0534.92026
[9] Freedman, H. I.; Waltman, P.: Persistence in a model of three competitive populations. Math. biosci. 73, 89-101 (1985) · Zbl 0584.92018
[10] Gard, T. C.: Persistence in food webs. Lecture notes in biomathematics 54, 208-219 (1984)
[11] Gard, T. C.; Hallam, T. G.: Persistence in food webs: I. Lotka-Volterra food chains. Bull. math. Biol. 41, 877-891 (1979) · Zbl 0422.92017
[12] Gopalsamy, K.: Persistence in periodic and almost periodic Lotka-Volterra systems. J. math. Biol. 21, 145-148 (1984) · Zbl 0548.92016
[13] Hallam, T. G.; Clark, C. E.: Non-autonomous logistic equations as models of populations in a deteriorating environment. J. theoret. Biol. 93, 303-311 (1981)
[14] Hallam, T. G.; Levin, S. A.: Mathematical ecology: an introduction. Biomathematics 17 (1986) · Zbl 0598.92019
[15] Hallam, T. G.; Zhien, Ma: Persistence in population models with demographic fluctuations. J. math. Biol. 24, 327-339 (1986) · Zbl 0606.92022
[16] Hallam, T. G.; Zhien, Ma: On density and extinction in continuous population models. J. math. Biol. 25, 191-201 (1987) · Zbl 0641.92011
[17] Hastings, A.: Global stability in two species systems. J. math. Biol. 5, 399-403 (1978) · Zbl 0382.92008
[18] Hofbauer, J.: A general cooperation theorem for hypercycles. Monatsh. math. 91, 233-240 (1981) · Zbl 0449.34039
[19] May, R. M.: Stability and complexity in model ecosystems. Monographs in population biology 6 (1974)
[20] May, R. M.: Theoretical ecology: principles and applications. (1976)
[21] Nisbet, R. M.; Gurney, W. S. C.: Population dynamics in a periodically varying environment. J. theoret. Biol. 56, 459 (1976)
[22] Nisbet, R. M.; Gurney, W. S. C.: Modelling fluctuating populations. (1982) · Zbl 0593.92013
[23] Roughgarden, J.: Theory of population genetics and evolutionary ecology: an introduction. 634 (1977)
[24] Steele, J. H.: The structure of marine ecosystems. (1974)
[25] Turelli, M.: Stochastic community theory: A partially guided tour. Biomathematics 17, 321-338 (1986)
[26] Wangersky, P. J.: Lotka-Volterra population models. Ann. rev. Ecol. syst. 9, 189-218 (1978)