×

zbMATH — the first resource for mathematics

On the decentralized stabilization of interconnected discrete time systems. (English) Zbl 0631.93059
This paper presents a computationally simpler algorithm for stability analysis of large-scale time-invariant discrete-time systems described in the state-space model. An attempt is made to develop a decentralized stabilization algorithm based on a decentralized observer utilizing the canonical model of B. D. O. Anderson and D. G. Luenberger [Proc. Inst. Electr. Eng. 114, 395-399 (1967)]. The results of this paper are illustrated by considering a power system model as an example.
MSC:
93D15 Stabilization of systems by feedback
93B40 Computational methods in systems theory (MSC2010)
93A15 Large-scale systems
93B10 Canonical structure
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] B. D. O. Anderson, D. G. Luenberger: Design of multivariable feedback systems. Proc. Inst. Electr. Engrs. 114 (1967), 395-399.
[2] E. J. Davison: The decentralized stabilization and control of a class of unknown nonlinear time-varying systems. Automatica 10 (1974), 309-316. · Zbl 0308.93023 · doi:10.1016/0005-1098(74)90041-7
[3] U. Ózgüner, W. R. Perkins: Structural properties of large scale composite systems. Large-scale Dynamical Systems Point (R. Saeks, Lobos Press, N. Hollywood, California 1975. · Zbl 0352.93005
[4] M. E. Sezer, O. Huseyin: Stabilization of linear interconnected systems using local state feedback. IEEE Trans. Systems Man Cybernet. SMC-8 (1978), 751-756.
[5] M. E. Sezer, O. Huseyin: On decentralized stabilization of interconnected systems. Automatica 16 (1980), 205-209. · Zbl 0433.93045 · doi:10.1016/0005-1098(80)90056-4
[6] D. D. Šiljak, M. B. Vukčevic: Decentrally stabilizable linear and bilinear large-scale systems. Internat. J. Control 26 (1977), 289-305. · Zbl 0394.93039
[7] A. K. Mahalanabis, R. N. Singh: On decentralized feedback stabilization of large scale interconnected systems. Internat. J. Control 32 (1980), 115-126. · Zbl 0451.93047 · doi:10.1080/00207178008922848
[8] M. Ikeda, D. D. Šiljak: On decentrally stabilizable large-scale systems. Automatica 16 (1980), 331-334. · Zbl 0432.93004 · doi:10.1016/0005-1098(80)90042-4
[9] S. H. Wang, E. J. Davison: On the stabilization of decentralized control systems. IEEE Trans. Automat. Control AC-18 (1973), 473 - 478. · Zbl 0347.93030
[10] D. Q. Mayne: A canonical form for identification of multivariable linear systems. IEEE Trans. Automat. Control AC-17 (1972), 728-729. · Zbl 0265.93008 · doi:10.1109/TAC.1972.1100108
[11] V. Strejc: State Space Theory of Discrete Linear Control. John Wiley, Chichester 1981. · Zbl 0567.93051
[12] J. L. Willems: Design of state observers for linear discrete time systems. Internat J. Systems Sci. 11 (1980), 139-147. · Zbl 0436.93006 · doi:10.1080/00207728008967002
[13] M. G. Singh: Decentralized Control. North Holland, Amsterdam 1981.
[14] O. I. Elgerd: Electric Energy Systems Theory. McGraw-Hill, New York 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.