zbMATH — the first resource for mathematics

Cyclic extensions and the local lifting problem. (English) Zbl 1307.14042
It was known that a projective, smooth, connected curve \(\bar{Y}\) defined over an algebraically closed field \(k\) of positive characteristic \(p\) can be lifted to characteristic zero, i.e. there is a discrete valuation ring \(R\) of characteristic zero with residue field \(k\) and a relative \(R\) curve \(Y\) with special fibre \(\bar{Y}\).
F. Oort [“Some questions in algebraic geometry” (1995), http://www.math.uu.nl/~oort0109/A-Qnew.ps] proposed a similar problem, on whether a Galois cover \(\bar{f}: \bar{Y} \rightarrow \bar{X}\) with Galois group \(\Gamma\) can be lifted in the same way to a Galois cover of relative \(R\)-curves. For a general group \(\Gamma\) this is not possible, there are obstructions based on the size of \(\Gamma\) with respect to the genus, the Bertin obstruction [J. Bertin, C. R. Acad. Sci., Paris, Sér. I, Math. 326, No. 1, 55–58 (1998; Zbl 0952.14018)] and the Hurzitz tree obstruction [L. H. Brewis and S. Wewers, Math. Ann. 345, No. 3, 711–730 (2009; Zbl 1222.14045)]. But for cyclic groups all these obstructions vanish. The Oort conjecture claims that a cyclic group cover of order \(p^n\) can always be lifted to characteristic zero.
The breakthrough result of the authors completes the result of F. Pop [Ann. Math. (2) 180, No. 1, 285–322 (2014; Zbl 1311.12003)] and the two articles together provide a full proof of the Oort conjecture.
The proof uses the local nature of the lifting problem expressed in terms of the local-global lifting property and restates the problem in terms of a lifting problem of formal power series in terms of rigid analytic geometry. This problem is restated in the language of characters, i.e. elements in \(H^1(\mathbb{K},\mathbb{Z}/p^n \mathbb{Z})\), where \(\mathbb{K}\) is the function field of the curve \(X\) in the generic fibre. Such a character corresponds to a branched cover \(Y \rightarrow X\) and several invariants are attached to a character, like three types of Swan conductors, which measure how bad is the reduction of a cover. The proof uses an induction process based on a detailed study of \(\mathbb{Z}/p\mathbb{Z}\)-extensions which are the building blocks of the induction.

14H37 Automorphisms of curves
12F10 Separable extensions, Galois theory
11G20 Curves over finite and local fields
12F15 Inseparable field extensions
13B05 Galois theory and commutative ring extensions
13F35 Witt vectors and related rings
14G22 Rigid analytic geometry
14H30 Coverings of curves, fundamental group
Full Text: DOI arXiv
[1] K. Arzdorf and S. Wewers, A local proof of the semistable reduction theorem, 2011.
[2] J. Bertin, ”Obstructions locales au relèvement de revêtements galoisiens de courbes lisses,” C. R. Acad. Sci. Paris Sér. I Math., vol. 326, iss. 1, pp. 55-58, 1998. · Zbl 0952.14018 · doi:10.1016/S0764-4442(97)82712-7
[3] J. Bertin and A. Mézard, ”Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques,” Invent. Math., vol. 141, iss. 1, pp. 195-238, 2000. · Zbl 0993.14014 · doi:10.1007/s002220000071
[4] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Berlin: Springer-Verlag, 1984, vol. 261. · Zbl 0539.14017
[5] S. Bosch and W. Lütkebohmert, ”Stable reduction and uniformization of abelian varieties. II,” Invent. Math., vol. 78, iss. 2, pp. 257-297, 1984. · Zbl 0554.14015 · doi:10.1007/BF01388596 · eudml:143174
[6] S. Bosch and W. Lütkebohmert, ”Formal and rigid geometry. I. Rigid spaces,” Math. Ann., vol. 295, iss. 2, pp. 291-317, 1993. · Zbl 0808.14017 · doi:10.1007/BF01444889 · eudml:165044
[7] I. Bouw and S. Wewers, Group actions on curves and the lifting problem. · Zbl 1108.14025 · swc.math.arizona.edu
[8] Brewis, Louis Hugo, Ramification theory of the \(p\)-adic open disc and the lifting problem. · Zbl 1332.14002 · d-nb.info · nbn-resolving.de
[9] L. H. Brewis and S. Wewers, ”Artin characters, Hurwitz trees and the lifting problem,” Math. Ann., vol. 345, iss. 3, pp. 711-730, 2009. · Zbl 1222.14045 · doi:10.1007/s00208-009-0374-0 · arxiv:0810.3603
[10] T. Chinburg, R. Guralnick, and D. Harbater, ”Oort groups and lifting problems,” Compos. Math., vol. 144, iss. 4, pp. 849-866, 2008. · Zbl 1158.12003 · doi:10.1112/S0010437X08003515 · arxiv:0709.0284
[11] H. P. Epp, ”Eliminating wild ramification,” Invent. Math., vol. 19, pp. 235-249, 1973. · Zbl 0254.13008 · doi:10.1007/BF01390208 · eudml:142195
[12] M. A. Garuti, ”Prolongement de revêtements galoisiens en géométrie rigide,” Compositio Math., vol. 104, iss. 3, pp. 305-331, 1996. · Zbl 0885.14011 · numdam:CM_1996__104_3_305_0 · eudml:90492
[13] M. A. Garuti, ”Linear systems attached to cyclic inertia,” in Arithmetic Fundamental Groups and Noncommutative Algebra, Providence, RI: Amer. Math. Soc., 2002, vol. 70, pp. 377-386. · Zbl 1072.14017 · doi:10.1090/pspum/070/1935414 · arxiv:math/9912164
[14] B. Green, ”Realizing deformations of curves using Lubin-Tate formal groups,” Israel J. Math., vol. 139, pp. 139-148, 2004. · Zbl 1147.11344 · doi:10.1007/BF02787544
[15] B. Green and M. Matignon, ”Liftings of Galois covers of smooth curves,” Compositio Math., vol. 113, iss. 3, pp. 237-272, 1998. · Zbl 0923.14006 · doi:10.1023/A:1000455506835
[16] B. Green and M. Matignon, ”Order \(p\) automorphisms of the open disc of a \(p\)-adic field,” J. Amer. Math. Soc., vol. 12, iss. 1, pp. 269-303, 1999. · Zbl 0923.14007 · doi:10.1090/S0894-0347-99-00284-2
[17] D. Harbater, ”Moduli of \(p\)-covers of curves,” Comm. Algebra, vol. 8, iss. 12, pp. 1095-1122, 1980. · Zbl 0471.14011 · doi:10.1080/00927878008822511
[18] K. Kato, ”Vanishing cycles, ramification of valuations, and class field theory,” Duke Math. J., vol. 55, iss. 3, pp. 629-659, 1987. · Zbl 0665.14005 · doi:10.1215/S0012-7094-87-05532-3
[19] N. M. Katz, ”Local-to-global extensions of representations of fundamental groups,” Ann. Inst. Fourier \((\)Grenoble\()\), vol. 36, iss. 4, pp. 69-106, 1986. · Zbl 0564.14013 · doi:10.5802/aif.1069 · numdam:AIF_1986__36_4_69_0 · eudml:74739
[20] S. Lang, Algebra, third ed., New York: Springer-Verlag, 2002, vol. 211. · Zbl 0984.00001 · doi:10.1007/978-1-4613-0041-0
[21] Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford: Oxford University Press, 2002, vol. 6. · Zbl 0996.14005
[22] M. Nagata, Local Rings, Huntington, N.Y.: Robert E. Krieger Publishing Co., 1975. · Zbl 0386.13010
[23] A. Obus, ”The (local) lifting problem for curves,” in Galois-Teichmüller Theory and Arithmetic Geometry, Tokyo: Math. Soc. Japan, 2012, vol. 63, pp. 359-412. · Zbl 1321.14028 · arxiv:1105.1530
[24] F. Oort, Some questions in algebraic geometry. · Zbl 1182.01012 · www.staff.science.uu.nl
[25] F. Oort, ”Lifting algebraic curves, abelian varieties, and their endomorphisms to characteristic zero,” in Algebraic Geometry, Bowdoin, 1985, Providence, RI: Amer. Math. Soc., 1987, vol. 46, pp. 165-195. · Zbl 0645.14017 · doi:10.1090/pspum/046.2/927980
[26] F. Pop, ”Lifting of curves: The Oort conjecture,” Ann. of Math., vol. 180, iss. 1, pp. 285-322, 2014. · Zbl 1311.12003 · doi:10.4007/annals.2014.180.1.6 · arxiv:1203.1867
[27] T. Sekiguchi, F. Oort, and N. Suwa, ”On the deformation of Artin-Schreier to Kummer,” Ann. Sci. École Norm. Sup., vol. 22, iss. 3, pp. 345-375, 1989. · Zbl 0714.14024 · numdam:ASENS_1989_4_22_3_345_0 · eudml:82255
[28] T. Sekiguchi and N. Suwa, On the unified Kummer-Artin-Schreier-Witt theory, 1994. · Zbl 0845.14023
[29] T. Sekiguchi and N. Suwa, On the unified Kummer-Artin-Schreier-Witt theory, 1999.
[30] T. Sekiguchi and N. Suwa, ”A note on extensions of algebraic and formal groups. IV. Kummer-Artin-Schreier-Witt theory of degree \(p^2\),” Tohoku Math. J., vol. 53, iss. 2, pp. 203-240, 2001. · Zbl 1073.14546 · doi:10.2748/tmj/1178207479
[31] . J-P. Serre, Corps Locaux, Paris: Hermann, 1968.
[32] D. Tossici, ”Models of \(\mu_{p^2,K}\) over a discrete valuation ring,” J. Algebra, vol. 323, iss. 7, pp. 1908-1957, 2010. · Zbl 1193.14059 · doi:10.1016/j.jalgebra.2010.01.012
[33] S. Wewers, Swan conductors on the boundary of Lubin-Tate spaces, 2005.
[34] S. Wewers, ”Fiercely ramified cyclic extensions of \(p\)-adic fields with imperfect residue field,” Manuscripta Math., pp. 1-28, 2013. · Zbl 1304.11132 · doi:10.1007/s00229-013-0630-1
[35] E. Witt, ”Zyklische Körper und Algebren der Charakteristik \(p\) vom Grad \(p^n\),” J. Reine Angew. Math., vol. 176, pp. 126-140, 1937. · Zbl 0016.05101 · crelle:GDZPPN002173905 · eudml:149985
[36] O. Zariski and P. Samuel, Commutative Algebra. Vol. II, New York: Springer-Verlag, 1975. · Zbl 0322.13001 · doi:10.1007/978-3-662-29244-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.