zbMATH — the first resource for mathematics

Spatiospectral concentration of vector fields on a sphere. (English) Zbl 1336.94024
Summary: We construct spherical vector bases that are bandlimited and spatially concentrated, or, alternatively, spacelimited and spectrally concentrated, suitable for the analysis and representation of real-valued vector fields on the surface of the unit sphere, as arises in the natural and biomedical sciences, and engineering. Building on the original approach of Slepian, Landau, and Pollak we concentrate the energy of our function bases into arbitrarily shaped regions of interest on the sphere, and within certain bandlimits in the vector spherical-harmonic domain. As with the concentration problem for scalar functions on the sphere, which has been treated in detail elsewhere, a Slepian vector basis can be constructed by solving a finite-dimensional algebraic eigenvalue problem. The eigenvalue problem decouples into separate problems for the radial and tangential components. For regions with advanced symmetry such as polar caps, the spectral concentration kernel matrix is very easily calculated and block-diagonal, lending itself to efficient diagonalization. The number of spatiospectrally well-concentrated vector fields is well estimated by a Shannon number that only depends on the area of the target region and the maximal spherical-harmonic degree or bandwidth. The spherical Slepian vector basis is doubly orthogonal, both over the entire sphere and over the geographic target region. Like its scalar counterparts it should be a powerful tool in the inversion, approximation and extension of bandlimited fields on the sphere: vector fields such as gravity and magnetism in the earth and planetary sciences, or electromagnetic fields in optics, antenna theory and medical imaging.

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
94A17 Measures of information, entropy
Full Text: DOI arXiv
[1] Slepian, D.; Pollak, H. O., Prolate spheroidal wave functions, Fourier analysis and uncertainty - I, Bell Syst. Tech. J., 40, 1, 43-63, (1961) · Zbl 0184.08601
[2] Landau, H. J.; Pollak, H. O., Prolate spheroidal wave functions, Fourier analysis and uncertainty - II, Bell Syst. Tech. J., 40, 1, 65-84, (1961) · Zbl 0184.08602
[3] Landau, H. J.; Pollak, H. O., Prolate spheroidal wave functions, Fourier analysis and uncertainty - III: the dimension of the space of essentially time- and band-limited signals, Bell Syst. Tech. J., 41, 4, 1295-1336, (1962) · Zbl 0184.08603
[4] Slepian, D., Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev., 25, 3, 379-393, (1983) · Zbl 0571.94004
[5] Thomson, D. J., Spectrum estimation and harmonic analysis, Proc. IEEE, 70, 1055-1096, (1982)
[6] Simons, F. J., Slepian functions and their use in signal estimation and spectral analysis, (Freeden, W.; Nashed, M. Z.; Sonar, T., Handbook of Geomathematics, Chapter 30, (2010), Springer Heidelberg, Germany), 891-923 · Zbl 1197.86039
[7] Simons, F. J.; Dahlen, F. A.; Wieczorek, M. A., Spatiospectral concentration on a sphere, SIAM Rev., 48, 3, 504-536, (2006) · Zbl 1117.42003
[8] Simons, F. J.; Wang, D. V., Spatiospectral concentration in the Cartesian plane, Internat. J. Geomath., 2, 1, 1-36, (2011) · Zbl 1226.42017
[9] Albertella, A.; Sacerdote, F., Using Slepian functions for local geodetic computations, Boll. Geod. Sci. Affini, 60, 1, 1-14, (2001)
[10] Simons, F. J.; Dahlen, F. A., Spherical Slepian functions and the polar gap in geodesy, Geophys. J. Int., 166, 1039-1061, (2006)
[11] Han, S.-C.; Rowlands, D. D.; Luthcke, S. B.; Lemoine, F. G., Localized analysis of satellite tracking data for studying time-variable earthʼs gravity fields, J. Geophys. Res., 113, (2008), B06401
[12] Slobbe, D. C.; Simons, F. J.; Klees, R., The spherical slepian basis as a means to obtain spectral consistency between mean sea level and the geoid, J. Geod., 86, 8, 609-628, (2012)
[13] Han, S.-C.; Ditmar, P., Localized spectral analysis of global satellite gravity fields for recovering time-variable mass redistributions, J. Geod., 82, 7, 423-430, (2007)
[14] Han, S.-C.; Sauber, J.; Luthcke, S. B.; Ji, C.; Pollitz, F. F., Implications of postseismic gravity change following the great 2004 sumatra-andaman earthquake from the regional harmonic analysis of GRACE inter-satellite tracking data, J. Geophys. Res., 113, (2008), B11413
[15] Han, S.-C.; Simons, F. J., Spatiospectral localization of global geopotential fields from the gravity recovery and climate experiment (GRACE) reveals the coseismic gravity change owing to the 2004 sumatra-andaman earthquake, J. Geophys. Res., 113, (2008), B01405
[16] Longuevergne, L.; Scanlon, B. R.; Wilson, C. R., GRACE hydrological estimates for small basins: evaluating processing approaches on the high plains aquifer, USA, Water Resour. Res., 46, 11, (2010), W11517
[17] Harig, C.; Simons, F. J., Mapping greenlandʼs mass loss in space and time, Proc. Natl. Acad. Sci., 109, 49, 19934-19937, (2012)
[18] Schott, J.-J.; Thébault, E., Modelling the earthʼs magnetic field from global to regional scales, (Mandea, M.; Korte, M., Geomagnetic Observations and Models, IAGA Spec. Sopron Book Ser., vol. 5, (2011), Springer), 229-264
[19] Simons, F. J.; Hawthorne, J. C.; Beggan, C. D., Efficient analysis and representation of geophysical processes using localized spherical basis functions, (Goyal, V. K.; Papadakis, M.; Van de Ville, D., Wavelets XIII, Proc. SPIE, vol. 7446, (2009), SPIE), 74460G
[20] Harig, C.; Zhong, S.; Simons, F. J., Constraints on upper mantle viscosity inferred from the flow-induced pressure gradient across the Australian continental keel, Geochem. Geophys. Geosyst., 11, 6, (2010)
[21] Evans, A. J.; Andrews-Hanna, J. C.; Zuber, M. T., Geophysical limitations on the erosion history within arabia terra, J. Geophys. Res., 115, (2010), E05007
[22] Goossens, S.; Ishihara, Y.; Matsumoto, K.; Sasaki, S., Local lunar gravity field analysis over the south pole-aitken basin from SELENE farside tracking data, J. Geophys. Res., 117, (2012), E02005
[23] Han, S.-C.; Mazarico, E.; Lemoine, F. G., Improved nearside gravity field of the Moon by localizing the power law constraint, Geophys. Res. Lett., 36, (2009), L11203
[24] Wieczorek, M. A., Constraints on the composition of the martian south polar cap from gravity and topography, Icarus, 196, 2, 506-517, (2008)
[25] Maniar, H.; Mitra, P. P., The concentration problem for vector fields, Int. J. Bioelectromagn., 7, 1, 142-145, (2005)
[26] Mitra, P. P.; Maniar, H., Concentration maximization and local basis expansions (LBEX) for linear inverse problems, IEEE Trans. Biomed. Eng., 53, 9, 1775-1782, (2006)
[27] Dahlen, F. A.; Simons, F. J., Spectral estimation on a sphere in geophysics and cosmology, Geophys. J. Int., 174, 3, 774-807, (2008)
[28] Das, S.; Hajian, A.; Spergel, D. N., Efficient power spectrum estimation for high resolution CMB maps, Phys. Rev. D, 79, 8, 083008, (2009)
[29] Lessig, C.; Fiume, E., On the effective dimension of light transport, (Lawrence, J.; Stamminger, M., Eurographics Symposium on Rendering 2010, vol. 29 (4), (2010), The Eurographics Association), 1399-1403
[30] Yeo, B. T.T.; Ou, W.; Golland, P., On the construction of invertible filter banks on the 2-sphere, IEEE Trans. Image Process., 17, 3, 283-300, (2008)
[31] SenGupta, I.; Sun, B.; Jiang, W.; Chen, G.; Mariani, M. C., Concentration problems for bandpass filters in communication theory over disjoint frequency intervals and numerical solutions, J. Fourier Anal. Appl., 18, 182-210, (2012) · Zbl 1252.94005
[32] Khalid, Z.; Durrani, S.; Sadeghi, P.; Kennedy, R. A., Spatio-spectral analysis on the sphere using spatially localized spherical harmonics transform, IEEE Trans. Signal Process., 60, 3, 1487-1492, (2012) · Zbl 1393.94299
[33] Wei, L.; Kennedy, R. A.; Lamahewa, T. A., Quadratic variational framework for signal design on the 2-sphere, IEEE Trans. Signal Process., 59, 11, 5243-5252, (2011) · Zbl 1393.94486
[34] Marinucci, D.; Peccati, G., Representations of SO(3) and angular polyspectra, J. Multivariate Anal., 191, 77-100, (2010) · Zbl 1216.60027
[35] Michel, V., Optimally localized approximate identities on the 2-sphere, Numer. Funct. Anal. Optim., 32, 8, 877-903, (2011) · Zbl 1229.41023
[36] Mitra, P. P.; Maniar, H., Local basis expansions for MEG source localization, Int. J. Bioelectromagn., 7, 2, 30-33, (2005)
[37] Eshagh, M., Spatially restricted integrals in gradiometric boundary value problems, Artif. Satell., 44, 4, 131-148, (2009)
[38] Stockmann, R.; Finlay, C. C.; Jackson, A., Imaging earthʼs crustal magnetic field with satellite data: A regularized spherical triangle tessellation approach, Geophys. J. Int., 179, 2, 929-944, (2009)
[39] Gubbins, D.; Ivers, D.; Masterton, S. M.; Winch, D. E., Analysis of lithospheric magnetization in vector spherical harmonics, Geophys. J. Int., 187, 99-117, (2011)
[40] Friis-Christensen, E.; Luhr, H.; Hulot, G., Swarm: A constellation to study the earthʼs magnetic field, Earth Planets Space, 58, 4, 351-358, (2006)
[41] Shure, L.; Parker, R. L.; Backus, G. E., Harmonic splines for geomagnetic modeling, Phys. Earth Planet. Inter., 28, 3, 215-229, (1982)
[42] Parker, R. L.; Shure, L., Efficient modeling of the earthʼs magnetic field with harmonic splines, Geophys. Res. Lett., 9, 8, 812-815, (1982)
[43] Langel, R. A., The main field, (Jacobs, J., Geomagnetism, vol. 1, (1987), Academic Press London), 249-512
[44] Haines, G. V., Spherical cap harmonic analysis, J. Geophys. Res., 90, NB3, 2583-2591, (1985)
[45] De Santis, A., Translated origin spherical cap harmonic analysis, Geophys. J. Int., 106, 1, 253-263, (1991)
[46] Korte, M.; Holme, R., Regularization of spherical cap harmonics, Geophys. J. Int., 153, 1, 253-262, (2003)
[47] Thébault, E., Global lithospheric magnetic field modelling by successive regional analysis, Earth Planets Space, 58, 4, 485-495, (2006)
[48] Thébault, E.; Schott, J. J.; Mandea, M., Revised spherical cap harmonic analysis (R-SCHA): validation and properties, J. Geophys. Res., 111, B1, (2006), B01102
[49] Holschneider, M.; Chambodut, A.; Mandea, M., From global to regional analysis of the magnetic field on the sphere using wavelet frames, Phys. Earth Planet. Inter., 135, 107-124, (2003)
[50] Chambodut, A.; Panet, I.; Mandea, M.; Diament, M.; Holschneider, M.; Jamet, O., Wavelet frames: an alternative to spherical harmonic representation of potential fields, Geophys. J. Int., 163, 3, 875-899, (2005)
[51] Mayer, C.; Maier, T., Separating inner and outer earthʼs magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets, Geophys. J. Int., 167, 1188-1203, (2006)
[52] Dahlen, F. A.; Tromp, J., Theoretical global seismology, (1998), Princeton Univ. Press Princeton, NJ
[53] Jeans, J., The propagation of earthquake waves, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 102, 554-574, (1923) · JFM 49.0756.01
[54] Edmonds, A. R., Angular momentum in quantum mechanics, (1996), Princeton Univ. Press Princeton, NJ · Zbl 0860.00016
[55] Messiah, A., Quantum mechanics, (2000), Dover New York
[56] Ilk, K. H., Ein beitrag zur dynamik ausgedehnter Körper: gravitationswechselwirkung, Dtsch. Geod. Komm. C, 288, (1983) · Zbl 0568.70010
[57] Paul, M. K., Recurrence relations for integrals of associated Legendre functions, Bull. Geod., 52, 177-190, (1978)
[58] Freeden, W.; Schreiner, M., Spherical functions of mathematical geosciences: A scalar, vectorial, and tensorial setup, (2009), Springer-Verlag Berlin, Heidelberg · Zbl 1167.86002
[59] Slepian, D., Prolate spheroidal wave functions, Fourier analysis and uncertainty - IV: extensions to many dimensions; generalized prolate spheroidal functions, Bell Syst. Tech. J., 43, 6, 3009-3057, (1964) · Zbl 0184.08604
[60] Horn, R. A.; Johnson, C. R., Matrix analysis, (1990), Cambridge University Press Cambridge, UK · Zbl 0704.15002
[61] Tricomi, F. G., Integral equations, (1970), Interscience New York
[62] Landau, H. J., On the eigenvalue behavior of certain convolution equations, Trans. Amer. Math. Soc., 115, 242-256, (1965) · Zbl 0195.41802
[63] Landau, H. J., Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., 117, 1, 37-52, (1967) · Zbl 0154.15301
[64] Flandrin, P., Time-frequency/time-scale analysis, (1999), Academic Press San Diego, CA
[65] Kanwal, R. P., Linear integral equations: theory and technique, (1971), Academic Press New York · Zbl 0219.45001
[66] Blanco, M. A.; Flórez, M.; Bermejo, M., Evaluation of the rotation matrices in the basis of real spherical harmonics, J. Mol. Struct., Theochem, 419, 19-27, (1997)
[67] Wieczorek, M. A.; Simons, F. J., Localized spectral analysis on the sphere, Geophys. J. Int., 162, 3, 655-675, (2005)
[68] Percival, D. B.; Walden, A. T., Spectral analysis for physical applications, multitaper and conventional univariate techniques, (1993), Cambridge University Press New York · Zbl 0796.62077
[69] Slepian, D.; Sonnenblick, E., Eigenvalues associated with prolate spheroidal wave functions of zero order, Bell Syst. Tech. J., 44, 1745-1759, (1965) · Zbl 0135.37701
[70] Maus, S.; Luhr, H.; Purucker, M., Simulation of the high-degree lithospheric field recovery for the swarm constellation of satellites, Earth Planets Space, 58, 4, 397-407, (2006)
[71] C.D. Beggan, J. Saarimäki, K.A. Whaler, F.J. Simons, Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions, Geophys. J. Int. (2013), http://dx.doi.org/10.1093/gji/ggs122, in press.
[72] Sabaka, T. J.; Olsen, N., Enhancing comprehensive inversions using the swarm constellation, Earth Planets Space, 58, 4, 371-395, (2006)
[73] Langlais, B.; Lesur, V.; Purucker, M. E.; Connerney, J. E.P.; Mandea, M., Crustal magnetic fields of terrestrial planets, Space Sci. Rev., 152, 1, 223-249, (2010)
[74] Lewis, K. W.; Simons, F. J., Local spectral variability and the origin of the martian crustal magnetic field, Geophys. Res. Lett., 39, (2012), L18201
[75] M.G. Sterenborg, J. Bloxham, Application of Slepian basis functions to magnetic field analysis of Saturn, in: Eos Trans. AGU, Fall Meet. Suppl., Abstract GOP33A-0928, 2007.
[76] Maus, S., An ellipsoidal harmonic representation of earthʼs lithospheric magnetic field to degree and order 720, Geochem. Geophys. Geosyst., 11, 06015, (2010)
[77] Schachtschneider, R.; Holschneider, M.; Mandea, M., Error distribution in regional inversion of potential field data, Geophys. J. Int., 181, 1428-1440, (2010)
[78] Schachtschneider, R.; Holschneider, M.; Mandea, M., Error distribution in regional modelling of the geomagnetic field, Geophys. J. Int., 191, 1015-1024, (2012)
[79] Jahn, K.; Bokor, N., Vector Slepian basis functions with optimal energy concentration in high numerical aperture focusing, Opt. Commun., 285, 8, 2028-2038, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.