×

Elastoplastic analysis by active macro-zones with linear kinematic hardening and von Mises materials. (English) Zbl 1291.74187

Summary: In this paper a strategy to perform elastoplastic analysis with linear kinematic hardening for von Mises materials under plane strain conditions is shown. The proposed approach works with the Symmetric Galerkin Boundary Element Method applied to multidomain problems using a mixed variables approach, to obtain a more stringent solution. The elastoplastic analysis is carried out as the response to the loads and the plastic strains, the latter evaluated through the self-equilibrium stress matrix. This matrix is used both, in the predictor phase, for trial stress evaluation and, in the corrector phase, for solving a nonlinear global system which provides the elastoplastic solution of the active macro-zones, i.e. those zones collecting bem-elements where the plastic consistency condition has been violated.The simultaneous use of active macro-zones gives rise to a nonlocal approach which is characterized by a large decrease in the plastic iteration number, although the proposed strategy requires the inversion and updating of Jacobian operators generally of big dimensions. A strategy developed in order to reduce the computational efforts due to the use of this matrix, in a recursive process, is shown.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
35Q74 PDEs in connection with mechanics of deformable solids

Software:

Karnak.sGbem; BEMECH
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Perez-Gavilan, J. J.; Aliabadi, M. H., A symmetric Galerkin BEM for multi-connected bodies: a new apprach, Eng. Anal. Bound. Elem., 25, 633-638, (2001) · Zbl 1065.74631
[2] Aliabadi, M. H.; Martin, D., Boundary element hyper-singular formulation for elastoplastic contact problem, Int. J. Numer. Methods Eng., 48, 995-1014, (2000) · Zbl 0974.74072
[3] Hatzigeorgeou, G. D.; Beskos, D. E., Dynamic elastoplastic analysis for 3-D structures by domain/boundary element method, Comput. Struct., 80, 339-347, (2002)
[4] Ribeiro, T. S.A.; Beer, G.; Duenser, C., Efficient elastoplastic analysis with boundary element method, Comput. Mech., 41, 715-732, (2008) · Zbl 1162.74488
[5] Brebbia, C. A.; Telles, J. C.F.; Wrobel, L. C., Boundary eelement techniques, (1984), Springer-Verlag Berlin · Zbl 0556.73086
[6] Maier, G.; Diligenti, M.; Carini, A., A variational approach to boundary element elastodynamic analysis and extension to multidomain problems, Comput. Methods Appl. Mech. Engrg., 92, 192-213, (1991) · Zbl 0744.73043
[7] Gray, L. J.; Paulino, G. H., Symmetric Galerkin boundary integral formulation for interface and multi-zone problems, Int. J. Numer. Methods Eng., 40, 3085-3101, (1997) · Zbl 0905.73077
[8] Layton, J. B.; Ganguly, S.; Balakrishna, C.; Kane, J. H., A symmetric Galerkin multi-zone boundary element formulation, Int. J. Numer. Methods Eng., 40, 2913-2931, (1997) · Zbl 0909.73084
[9] Ganguly, S.; Layton, J. B.; Balakrishna, C.; Kane, J. H., A fully symmetric multi-zone Galerkin boundary element method, Int. J. Numer. Methods Eng., 44, 991-1009, (1999) · Zbl 0966.74075
[10] Maier, G.; Polizzotto, C., A Galerkin approach to boundary element elastoplastic analysis, Comput. Methods Appl. Mech. Engrg., 60, 175-194, (1987) · Zbl 0602.73081
[11] Polizzotto, C., An energy approach to the boundary element method, part I: elastic solids, Comput. Methods Appl. Mech. Engrg., 69, 167-184, (1988) · Zbl 0629.73069
[12] Polizzotto, C., An energy approach to the boundary element method, part II: elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 69, 263-276, (1988) · Zbl 0629.73070
[13] Panzeca, T.; Salerno, M., Macro-elements in the mixed boundary value problems, Comput. Mech., 26, 437-446, (2000) · Zbl 0993.74078
[14] Panzeca, T.; Cucco, F.; Terravecchia, S., Symmetric boundary element method versus finite element method, Comput. Methods Appl. Mech. Engrg., 191, 3347-3367, (2002) · Zbl 1101.74370
[15] Panzeca, T.; Salerno, M.; Terravecchia, S., Domain decomposition in the symmetric boundary element method analysis, Comput. Mech., 28, 191-201, (2002) · Zbl 1076.74568
[16] Terravecchia, S., Revisited mixed-value method via symmetric BEM in the substructuring approach, Eng. Anal. Bound. Elem., 36, 1865-1882, (2012) · Zbl 1351.74139
[17] Panzeca, T.; Terravecchia, S.; Zito, L., Computational aspects in 2D SBEM analysis with domain inelastic actions, Int. J. Numer. Methods Eng., 82, 184-204, (2010) · Zbl 1188.74077
[18] Panzeca, T.; Salerno, M.; Terravecchia, S.; Zito, L., The symmetric boundary element method for unilateral contact problems, Comput. Methods Appl. Mech. Engrg., 197, 2667-2679, (2008) · Zbl 1194.74500
[19] Panzeca, T.; Zito, L.; Terravecchia, S., Internal spring distribution for quasi brittle fracture via symmetric boundary element method, Eur. J. Mech. A, 28, 354-367, (2009) · Zbl 1156.74368
[20] Zito, L.; Parlavecchio, E.; Panzeca, T., On the computational aspects of a symmetric multidomain BEM approach for elastoplastic analysis, J. Strain Anal., 46, 103-120, (2011)
[21] Panzeca, T., Shakedown and limit analysis by the boundary integral equation method, Eur. J. Mech. A, 11, 685-699, (1992) · Zbl 0765.73073
[22] Zhang, X.; Liu, Y.; Zhao, Y.; Cen, Z., Lower bound limit analysis by the symmetric Galerkin boundary element method and complex method, Comput. Methods Appl. Mech. Engrg., 191, 1967-1982, (2002) · Zbl 1098.74730
[23] Banerjee, P. K., The boundary element method in engineering, (1994), McGraw Hill London
[24] Bonnet, M.; Mukherjee, S., Implicit BEM formulations for usual and sensitivity problems in elastoplasticity using the consistent tangent operator concept, Int. J. Solids Struct., 33, 4461-4480, (1996) · Zbl 0918.73308
[25] Gao, X. W.; Davies, T. G., An effective boundary element algorithm for 2D and 3D elastoplastic problem, Int. J. Solids Struct., 37, 4987-5008, (2000) · Zbl 0970.74077
[26] Mallardo, V.; Alessandri, C., Arc-length procedures with BEM in physically nonlinear problems, Eng. Anal. Bound. Elem., 28, 547-559, (2004) · Zbl 1130.74467
[27] Wang, C. B.; Chatterjee, J.; Banerjee, P. K., An efficient implementation of BEM for two- and three-dimensional multi-region elastoplastic analyses, Comput. Methods Appl. Mech. Engrg., 196, 829-842, (2007) · Zbl 1120.74848
[28] Zito, L.; Cucco, F.; Parlavecchio, E.; Panzeca, T., Incremental elastoplastic analysis for active macro-zones, Int. J. Numer. Methods Eng., 91, 1365-1385, (2012)
[29] Panzeca, T.; Parlavecchio, E.; Zito, L.; Gao, X. W.; Guo, X., Lower bound limit analysis by BEM: convex optimization problem and incremental approach, Eng. Anal. Bound. Elem., 37, 558-568, (2013) · Zbl 1297.74152
[30] F. Cucco, T. Panzeca, S. Terravecchia, The program Karnak.sBem, Release 2.1, 2002. · Zbl 1166.74431
[31] Bonnet, M., Regularized direct and indirect symmetric varational BIE formulation for three-dimensional elasticity, Eng. Anal. Bound. Elem., 15, 93-102, (2005)
[32] Frangi, A.; Novati, G., Symmetric BE method in two-dimensional elasticity: evaluation of double integrals for curved elements, Comp. Mech., 19, 58-68, (1996) · Zbl 0888.73069
[33] Holzer, S., How to deal with hypersingular integrals in the symmetric BEM, Commun. Numer. Methods Eng., 9, 219-232, (1993) · Zbl 0781.65091
[34] Terravecchia, S., Closed form coefficients in the symmetric boundary element approach, Eng. Anal. Bound. Elem., 30, 479-488, (2006) · Zbl 1195.74263
[35] Bui, H. D., Some remarks about the formulation of three-dimensional thermoelastoplastic problems by integral equation, Int. J. Solids Struct., 14, 935-939, (1978) · Zbl 0384.73008
[36] Gao, X. W.; Davies, T. G., Boundary element programming in mechanics, (2002), Cambridge University Press Cambridge, UK
[37] T. Panzeca, S. Terravecchia, L. Zito, Computational aspects in thermoelasticity by the symmetric boundary element method, in: IX International Conference on Boundary Element Techniques, Seville, Spain, 2008, pp. 355-362.
[38] Simo, J.; Hughes, T. J.R., Computational inelasticity, (1998), Springer-Verlag New York, US · Zbl 0934.74003
[39] Ortiz, M.; Martin, J. B., Symmetry-preserving return mapping algorthms and incrementally extremal paths: a unification of concepts, Int. J. Numer. Methods Eng., 28, 1839-1853, (1989) · Zbl 0704.73030
[40] Bilotta, A.; Casciaro, R., A high-performance element for the analysis of 2D elastoplastic continua, Comput. Methods Appl. Mech. Engrg., 196, 818-828, (2007) · Zbl 1120.74804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.