zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sums of certain series of the Riemann zeta function. (English) Zbl 0632.10040
The object of the present paper is to investigate systematically several interesting families of summation formulas involving finite series of the Riemann zeta-function. Many of the various results, which are unified (and generalized) here in a remarkably simple manner, have received considerable attention in recent years. We also present a brief account of a number of analogous results associated with the (Hurwitz’s) generalized zeta-function.

11M06$\zeta (s)$ and $L(s, \chi)$
11M35Hurwitz and Lerch zeta functions
33B15Gamma, beta and polygamma functions
Full Text: DOI
[1] Abramowitz, M.; Stegun, I. A.: 2nd ed. Handbook of mathematical functions with formulas, graphs, and mathematical tables. Handbook of mathematical functions with formulas, graphs, and mathematical tables (1964) · Zbl 0171.38503
[2] Apostol, T. M.: Some series involving the Riemann zeta function. Proc. amer. Math. soc. 5, 239-243 (1954) · Zbl 0055.06903
[3] Barnes, E. R.; Kaufman, W. E.: The Euler-mascheroni constant. Amer. math. Monthly 72, 1023 (1965)
[4] Boole, G.: A treatise on the calculus of finite differences. (1872) · Zbl 04.0119.02
[5] Bromwich, T. J. I’a: An introduction to the theory of infinite series. (1926) · Zbl 52.0208.05
[6] Jr., L. M. Christophe; Finn, M. V.; Crow, J. A.: Two series involving zeta function values. Math. mag. 59, 176-178 (1986)
[7] Chrystal, G.: 7th ed. Algebra: an elementary text-book. Algebra: an elementary text-book (1964) · Zbl 18.0051.01
[8] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G.: Corrected and enlarged ed. Higher transcendental functions. Higher transcendental functions (1953)
[9] Glaisher, J. W. L: On the history of Euler’s constant. Messenger math. 1, 25-30 (1872)
[10] Glaisher, J. W. L: Relations connecting quantities of the form 1 + 2-n + 3-n + 4-n & c.. Messenger math. 44, 1-10 (1914--1915) · Zbl 45.1276.07
[11] Gradshteyn, I. S.; Ryzhik, I. M.: Table of integrals, series, and products. (1980) · Zbl 0521.33001
[12] Greenberg, R.; Marsh, D. C. B; Danese, A. E.: A zeta-function summation. Amer. math. Monthly 74, 80-81 (1967)
[13] Hansen, E. R.: A table of series and products. (1975) · Zbl 0438.00001
[14] Johnson, W. W.: Note on the numerical transcendents sn and sn = sn - 1. Bull. amer. Math. soc. 12, 477-482 (1905--1906)
[15] Jordan, C.: Calculus of finite differences. (1965) · Zbl 0154.33901
[16] Landau, E.: 2nd ed. Handbuch der lehre von der verteilung der primzahlen. Handbuch der lehre von der verteilung der primzahlen (1953)
[17] Legendre, A. M.: 4th ed. Traité des fonctions elliptiques et des intégrales eulériennes. Traité des fonctions elliptiques et des intégrales eulériennes 2 (1826)
[18] Menon, P. K.: Some series involving the zeta function. Math. student 29, 77-80 (1961) · Zbl 0122.05102
[19] Ramanujan, S.: A series for Euler’s constant ${\gamma}$. Messenger math. 46, 73-80 (1916--1917)
[20] Ramaswami, V.: Notes on Riemann’s ${\zeta}$-function. J. London math. Soc. 9, 165-169 (1934) · Zbl 0009.34801
[21] Robbins, H.: A remark on Stirling’s formula. Amer. math. Monthly 62, 26-29 (1955) · Zbl 0068.05404
[22] Shallit, J. D.; Zikan, K.: A theorem of goldbach. Amer. math. Monthly 93, 402-403 (1986)
[23] Singh, R. J.; Verma, D. P.: Some series involving Riemann zeta function. Yokohama math. J. 31, 1-4 (1983) · Zbl 0533.10035
[24] Stieltjes, T. J.: Table des valeurs des sommes sk = \sum1$\infty $n-k. Acta math. 10, 299-302 (1887) · Zbl 19.0241.02
[25] Suryanarayana, D.: Sums of the Riemann zeta function. Math. student 42, 141-143 (1974) · Zbl 0354.10011
[26] Titchmarsh, E. C.: The theory of the Riemann zeta-function. (1951) · Zbl 0042.07901
[27] Verma, D. P.: A note on Euler’s constant. Math. student 29, 140-141 (1961)
[28] Verma, D. P.; Kaur, A.: Summation of some series involving Riemann zeta function. Indian J. Math. 25, 181-184 (1983) · Zbl 0576.10029
[29] Whittaker, E. T.; Watson, G. N.: A course of modern analysis. (1927) · Zbl 53.0180.04
[30] Wilton, J. R.: A proof of Burnside’s formula for $\log {\gamma}$(x + 1) and certain allied properties of Riemann’s ${\zeta}$-function. Messenger math. 52, 90-93 (1922--1923) · Zbl 48.0409.04