×

zbMATH — the first resource for mathematics

Images in categories as reflections. (English) Zbl 0632.18001
The paper under review is based on joint work by the two authors, carried out in 1968/69 and not published until now (except for a preliminary technical report). As in the past, the image of a morphism \(f: A\to B\) of a category C is defined with respect to a subclass M of C via a factorization with a certain “global” diagonal property. This property is equivalent to the existence of a reflection for M in the category of commutative squares of C.
Although the generality of the presentation (which includes discussions of the dual concepts) may be of some interest to old-time categorists, the dependence of the notion of image on a choice of the subclass M renders the application of the results more troublesome than beneficial. Indeed, in most concrete categories the image of f is (or should be) the kernel of the pair of insertions \(B\rightrightarrows^{u}_{v}S\) associated with the amalgamated sum S of \(B\leftarrow^{f}A\to^{f}B\).
Reviewer: J.Sonner

MSC:
18A32 Factorization systems, substructures, quotient structures, congruences, amalgams
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
18A20 Epimorphisms, monomorphisms, special classes of morphisms, null morphisms
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] 1, F. Cagliari & S. Mantovani , Factorizations in topological categories and related topics , Preprint 1986 , MR 958734 · Zbl 0615.54011
[2] 2 H. , Ehrbar , Bilder und adjungierte Funktoren , Dissertation, Univ, München 1969 , 3, H. Ehrbar & O. Wyler , On subobjects and images in categories , Technical Report 68-34, Dept, Math., Carnegie-Mellon Univ . 1968 , 4, H. Ehrbar & O. Wyler , On subobjects and images in categories , Preprint 1969 , P.J. Freyd & G.M. Kelly , 5 Categories of continuous functors, I, J, Pure App , Algebra 2 ( 1972 ), 169 - 191 , MR 322004 | Zbl 0257.18005 · Zbl 0257.18005 · doi:10.1016/0022-4049(72)90001-1
[3] 6 A. Grothendieck , Sur quelques points d’algèbre homologique , Tohoku Math, J , 9 ( 1957 ), 119 - 221 , Article | MR 102537 | Zbl 0118.26104 · Zbl 0118.26104 · minidml.mathdoc.fr
[4] 7, H. Herrlich , Perfect subcategories and factorizations , Colloquia Math, Soc , Janos Bolyai 8 ( 1972 ), 387 - 403 , MR 362193 | Zbl 0335.54011 · Zbl 0335.54011
[5] 8 H. Herrlich , G. Salicrup & G.E. Strecker , Factorizations, denseness, separation, and relatively compact objects , Preprint 1986 , MR 911689 · Zbl 0629.18003
[6] 9, J.R. Isbell , Subobjects, adequacy, completeness, and categories of algebras , Rozprawy Mat , 36 ( 1964 ). MR 163939 | Zbl 0133.26703 · Zbl 0133.26703
[7] 10, M. Jurchescu & A. Lascu , Morfisme stricte, categorii cantoriene, functori de completare , Studii Cerc. Math. 18 ( 1966 ), 219 - 234 , MR 220793 | Zbl 0192.34102 · Zbl 0192.34102
[8] 11 G.M. Kelly , Monomorphisms, epimorphisms, and pull-backs , J, Austral, Math, Soc , 9 ( 1969 ), 124 - 142 , MR 240161 | Zbl 0169.32604 · Zbl 0169.32604 · doi:10.1017/S1446788700005693
[9] 12, J.F. Kennison , Full reflective subcategories and generalized covering spaces, III , J, Math , 12 ( 1968 ), 353 - 365 , MR 227247 | Zbl 0155.31402 · Zbl 0155.31402
[10] 13, J. Macdonald & W. Tholen , Decomposition of morphisms into infinitely many factors , Lecture Notes in Math , 962 , Springer ( 1982 ), 175 - 189 , MR 682955 | Zbl 0497.18006 · Zbl 0497.18006
[11] 14, S. Maclane , Duality for groups , Bul. Amer. Math. Soc. 50 ( 1950 ), 485 - 516 , Article | MR 49192 | Zbl 0045.29905 · Zbl 0045.29905 · doi:10.1090/S0002-9904-1950-09427-0 · minidml.mathdoc.fr
[12] 15, J. Sonner , Canonical categories , Proc, Conf, Categorical Algebra La Jolla 1965 , Springer ( 1966 ), 272 - 294 , MR 220794 | Zbl 0185.04002 · Zbl 0185.04002
[13] 16, G.E. Strecker , Perfect sources , Lecture Notes in Math , 540 , Springer ( 1976 ), 605 - 624 , MR 451192 | Zbl 0338.54007 · Zbl 0338.54007
[14] 17, W. Tholen , Factorizations, localizations and the orthogonal subcategory problem , Math. Nachr. 114 ( 1983 ), 63 - 85 , MR 745048 | Zbl 0553.18003 · Zbl 0553.18003 · doi:10.1002/mana.19831140105
[15] 18, O. Wyler , Weakly exact categories , Archiv d, Math , ( Basel ) 17 ( 1966 ), 9 - 19 , MR 190211 | Zbl 0163.01503 · Zbl 0163.01503 · doi:10.1007/BF01900199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.