Daubechies, Ingrid; Grossman, A. Frames in the Bargmann Hilbert space of entire functions. (English) Zbl 0632.30049 Commun. Pure Appl. Math. 41, No. 2, 151-164 (1988). We look at the decomposition of arbitrary f in \(L^ 2({\mathbb{R}})\) in terms of the family of functions \(\phi _{mn}(x)=\pi ^{-1/4} \exp \{-mnab+i \max -(x-nb)^ 2\}\), with \(a,b>0\). We derive bounds and explicit formulas for the minimal expansion coefficients in the case where \(ab=(2\pi /N)\), N integer \(\geq 2\). Transported to the Hilbert space F of entire functions introduced by V. Bargmann, these results are expressed as inequalities of the form \[ m\| f\| ^ 2\leq \sum _{m,n\in Z}| f(z_ mn)| ^ 2 \exp ^{\{| z_{mn}| ^ 2\}}\leq M\| f\| ^ 2, \] where \(z_{mn}=ma+inb\), m and \(M>0\), and \(\| \|\) is the norm in F, \[ \| f\| ^ 2=(2\pi)^{-1}\iint _{R^ 2}dx dy| f(x+iy)| ^ 2 \exp ^{\{-(x^ 2+y^ 2)\}}. \] We conjecture that these inequalities remain true for all a,b such that \(ab<x2\pi\). Cited in 45 Documents MSC: 30H05 Spaces of bounded analytic functions of one complex variable 46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces Keywords:Hilbert space PDFBibTeX XMLCite \textit{I. Daubechies} and \textit{A. Grossman}, Commun. Pure Appl. Math. 41, No. 2, 151--164 (1988; Zbl 0632.30049) Full Text: DOI References: [1] Aronszajn, Trans. Am. Math. Soc. 68 pp 337– (1950) [2] Bacry, Phys. Rev. B12 pp 1118– (1975) · doi:10.1103/PhysRevB.12.1118 [3] Bargmann, Part I. Comm. Pure Appl. Math. 14 pp 187– (1961) [4] Bargmann, Comm. Pure Appl. Math. 20 pp 1– (1967) [5] Bargmann, Rep. Mod. Phys. 2 pp 221– (1971) [6] Bateman Project, Higher Transcendental Functions, Vol. 2, McGraw Hill, New York, 1955. [7] Daubechies, J. Math. Phys. 27 pp 1271– [8] Duffin, Trans. Am. Math. Soc. 72 pp 341– (1952) [9] Fischer, J. für Reine und Angew. Math. 140 pp 48– (1911) [10] Fock, Zeit. f. Physik 49 pp 339– (1928) [11] Gabor, J. Inst. Elec. Engrs. (London) 93 pp 429– (1946) [12] Gabor representation and Wigner distribution of signals, In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, April 1983, pp. 41B.2.1.–41B.2.4. [13] and , Coherent States–Applications in Physics and Mathematical Physics, World Scientific Press, Singapore, 1985. · Zbl 0653.00022 · doi:10.1142/0096 [14] and , Fundamentals of Quantum Optics, Benjamin, New York, 1968. [15] and , Fischer spaces of entire functions, in Proc. Symp. Pure Math., Vol. 11, American Mathematical Society, Providence, 1966, pp. 360–369. [16] Newman, Bull. Am. Math. Soc. 72 pp 971– (1966) [17] Perelomov, Theor. Math. Phys. 6 pp 156– (1971) [18] Mathematical Problems of Relativistic Physics, American Mathematical Society, Providence, Rhode Island, 1963. [19] Topics in Approximation Theory, Lecture Notes in Mathematics, Vol. 187, Springer, Berlin, 1971. · Zbl 0213.08501 · doi:10.1007/BFb0058976 [20] The Theory of Groups and Quantum Mechanics, Dover, New York, 1950. (Translation of the 2nd German edition.) [21] An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980. · Zbl 0493.42001 [22] Zak, Phys. Rev. Lett. 19 pp 1385– (1967) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.