×

zbMATH — the first resource for mathematics

\(\mathcal H_\infty\) static output-feedback control design with constrained information for offshore wind turbine system. (English) Zbl 1293.93345
Summary: This paper deals with \(\mathcal H\infty\) static output-feedback control design with constrained information for offshore wind turbines. Constrained information indicates that a special zero-nonzero structure is imposed on the static output-feedback gain matrix. A practical use of such an approach is to design a decentralized controller for a wind turbine. This will also benefit the controller in such a way that it is more tolerant to sensor failure. Furthermore, the model under consideration is obtained by using the wind turbine simulation software FAST. Sufficient conditions to design an \(\mathcal H_\infty\) controller are given in terms of linear matrix inequalities \((\mathcal{LMI}\text s)\). Simulation results are given to illustrate the effectiveness of the proposed methodology for different cases of the control gain structures.

MSC:
93B52 Feedback control
93A14 Decentralized systems
93C95 Application models in control theory
Software:
FAST; FAST; TurbSim; YALMIP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdin, E. S.; Xu, W., Control design and dynamic performance analysis of a wind turbine induction generator unit, IEEE Transactions on Energy Conversion, 15, 1, 91-96, (2000)
[2] Muyeen, S. M.; Ali, M. H.; Takahashi, R.; Murata, T.; Tamura, J.; Tomaki, Y.; Sakahara, A.; Sasano, E., Comparative study on transient stability analysis of wind turbine generator system using different drive train models, IET Renewable Power Generation, 1, 2, 131-141, (2007)
[3] T.J. Larsen, How 2 HAWC2, the userʼs manual, Risø-R-1597(ver. 3-9)(EN), 2009.
[4] C.L. Bottasso, A. Croce, Cp-Lambda user manual, 2009.
[5] J. Jonkman, M.L. Buhl Jr., FAST Users Guide, Technical Report NREL/EL-500-38230, National Renewable Energy Laboratory, 2005.
[6] AlHamaydeh, M.; Hussain, S., Optimized frequency-based foundation design for wind turbine towers utilizing soil-structure interaction, Journal of the Franklin Institute, 348, 1470-1487, (2011) · Zbl 1316.74058
[7] Eggleston, D. M.; Stoddard, F. S., Wind turbine engineering design, (1987), Van Nostrand Reinhold
[8] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in systems and control theory, SIAM studies in applied mathematics, (1994)
[9] A.I. Zečevic´, D.D. Šiljak, Design of robust static output feedback for large-scale systems, IEEE Transactions of Automatic Control (11) (2004) 2040-2044.
[10] Zečevic´, A. I.; Šiljak, D. D., Control design with arbitrary information structure constraints, Automatica, 44, 10, 2642-2647, (2008) · Zbl 1155.93347
[11] Zečevic´, A. I.; Šiljak, D. D., Control of complex systemsstructural constraints and uncertainty, (2010), Springer · Zbl 1211.93003
[12] Rubió-Massegú, J.; Rossell, J. M.; Karimi, H. R.; Palacios-Quiñonero, F., Static output-feedback control under information structure constraints, Automatica, 49, 1, 313-316, (2013) · Zbl 1257.93045
[13] Sloth, C.; Esbensen, T.; Stoustrup, J., Robust and fault-tolerant linear parameter-varying control of wind turbines, Mechatronics, 21, 4, 645-659, (2011)
[14] Kamal, E.; Aitouche, A.; Ghorbani, R.; Bayrat, M., Robust fuzzy fault-tolerant control of wind energy conversion systems subjected to sensor faults, IEEE Transactions of Sustainable Energy, 3, 2, 231-241, (2012)
[15] F. Zhang, W.E. Leithead, O. Anaya-Lara, Wind turbine control design to enhance the fault ride-through capability, in: IET Conference on Renewable Power Generation, 2011, pp.1-6.
[16] J. Jonkman, S. Butterfield, W. Musial, G. Scott, Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, 2009.
[17] J. Jonkman, M.L. Buhl Jr., FAST Users Guide, Technical Report NREL/EL-500-38230, National Renewable Energy Laboratory, 2005.
[18] J. Jonkman, Definition of the Floating System for Phase IV of OC3, Technical Report NREL/TP-500-47535, National Renewable Energy Laboratory, 2010.
[19] J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in: Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.
[20] B.J. Jonkman, TurbSim User Guide: Version 1.50, Technical Report NREL/EL-500-46198, National Renewable Energy Laboratory, September 2009.
[21] T. Bakka, H.R. Karimi, “Robust H_∞ Dynamic Output Feedback Control Synthesis with Pole Placement Constraints for Offshore Wind Turbine Systems,” Mathematical Problems in Engineering, 2012 (2012) 10.1155/2012/616507, in press · Zbl 1264.93164
[22] T. Bakka, H.R. Karimi, Multi-objective control design with pole placement constraints for wind turbine systems, Advances on Analysis and Control of Vibrations—Theory and Applications, INTECH 2012, ISBN 978-953-51-0699-9, pp. 179-194.
[23] T. Bakka, H.R. Karimi, N.A. Duffie, Gain scheduling for output \(H_\infty\) control of offshore wind turbine, in: Proceedings of the Twenty-second International Offshore and Polar Engineering Conference, 2012, pp. 496-501.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.