## Extending proper holomorphic mappings of positive codimension.(English)Zbl 0633.32017

Let $$M\subset {\mathbb{C}}^ n$$ and $$M'\subset {\mathbb{C}}^ N$$ $$(N>n>1)$$ be smooth real-analytic pseudoconvex hypersurfaces, M of finite type, and M’ strictly pseudoconvex. Let $$D\subset {\mathbb{C}}^ n$$ be a domain which contains M in its boundary and is pseudoconvex along M. Assume that $$f: D\cup M\to {\mathbb{C}}^ N$$ is a mapping of class $${\mathcal C}^{\infty}$$ that is holomorphic on D and maps M to M’. We associate to f an integer valued, upper semicontinuous function $$\nu$$ on M, called the deficiency of f. If $$\nu$$ is constant in a neighborhood of a point $$z\in M$$ in M, then f extends holomorphically to a neighborhood of z in $${\mathbb{C}}^ n$$. This holds in an open, everywhere dense subset $$M_ 0$$ of M. If M’ is the unit sphere in $${\mathbb{C}}^ N$$, then the same is true if f is merely of class $${\mathcal C}^{N-n+1}(D\cup M)$$. If both M and M’ are unit spheres, then f extends to a rational mapping of $${\mathbb{C}}^ n$$ to $${\mathbb{C}}^ N$$. In particular, every proper holomorphic map $$f: {\mathfrak B}^ n\to {\mathfrak B}^ N$$ $$(N>n>1)$$ that is of class $${\mathcal C}^{N- n+1}(\bar {\mathfrak B}^ n)$$ near a boundary point $$p\in b{\mathfrak B}^ n$$ is rational of degree at most $$N^ 2(N-n+1).$$ This generalizes the theorem of H. Alexander [Math. Ann. 209, 249-256 (1974; Zbl 0272.32006)] which asserts that every proper holomorphic map $$f: {\mathfrak B}^ n\to {\mathfrak B}^ n$$ for $$n>1$$ is an automorphism of $${\mathfrak B}^ n$$ and thus a Möbius map. Special cases have been obtained previously by Webster, Faran, Cima and Suffridge, and the author.

### MSC:

 32D15 Continuation of analytic objects in several complex variables 32H35 Proper holomorphic mappings, finiteness theorems

### Keywords:

proper holomorphic map; holomorphic extension

### Citations:

Zbl 0272.32006; Zbl 0281.32019
Full Text:

### References:

  Alexander, H.: Holomorphic mappings from the ball and polydisc. Math. Ann.209, 249–256 (1974) · Zbl 0281.32019  Baouend, M.S., Rothschild, L.P.: Germs of CR maps between real-analytic hypersurfaces. Preprint 1987  Baouendi, M.S., Treves, F.: About the holomorphic extension of CR functions on real hypersurfaces in complex space. Duke Math. J.51, 77–107 (1984) · Zbl 0564.32011  Baouendi, M.S., Bell, S., Rothschild, L.P.: CR mappings of finite multiplicity and extension of proper holomorphic mappings. Bull. Am. Math. Soc.16, 265–270 (1987) · Zbl 0627.32016  Baouendi, M.S., Jacobowitz, H., Treves, F.: On the analiticity of CR mappings. Ann. Math.122, 365–400 (1985) · Zbl 0583.32021  Bedford, E., Bell, S.: Extension of proper holomorphic mappings past the boundary. Manuscr. Math.50, 1–10 (1985) · Zbl 0583.32044  Bell, S., Catlin, D.: Boundary regularity of proper holomorphic mappings. Duke Math. J.49, 385–396 (1982) · Zbl 0486.32014  Bell, S., Catlin, D.: Regularity of CR mappings. Preprint 1987 · Zbl 0639.32011  Bochner, S., Martin, W.T.: Several complex variables. Princeton: Princeton University Press 1948 · Zbl 0041.05205  Cartan, H.: Calculus différentiel. Paris: Hermann 1967  Cima, J., Suffridge, T.J.: A reflection principle with applications to proper holomorphic mappings. Math. Ann.265, 489–500 (1983) · Zbl 0525.32021  Cima, J., Suffridge, T.J.: Proper holomorphic mappings from the two-ball to the three-ball. Preprint 1987 · Zbl 0668.32025  Cima, J., Krantz, S., Suffridge, T.J.: A reflection principle for proper holomorphic mappings of strictly pseudoconvex domains and applications. Math. Z.186, 1–8 (1984) · Zbl 0531.32010  Čirka, E.M.: Complex analytic varieties. (Russian). Nauka, Moskva 1985  D’Angelo, J.: Real hypersurfaces, orders of contact, and applications. Ann. Math.115, 615–637 (1982) · Zbl 0488.32008  D’Angelo, J.: Proper holomorphic maps between balls of different dimensions. Preprint 1987  D’Angelo, J.: Polynomial proper maps between balls. Preprint 1987  Derridj, M.: Le principe de réflexion en des points de faible pseudoconvexité, pour des applications holomorphes propres. Invent. Math.79, 197–215 (1985) · Zbl 0554.32011  Diederich, K., Fornæss, J.E.: Boundary regularity of proper holomorphic mappings. Invent. Math.67, 363–384 (1982) · Zbl 0501.32010  Diederich, K., Fornæss, J.E.: Pseudoconvex domains: Existence of Stein neighborhoods. Duke Math. J.44, 641–661 (1977) · Zbl 0381.32014  Diederich, K., Fornæss, J.E.: Proper holomorphic mappings between real-analytic pseudoconvex domains inC n . Preprint 1987 · Zbl 0661.32025  Diederich, K., Webster, S.M.: A reflection principle for degenerate real hypersurfaces. Duke Math. J.47, 835–843 (1980) · Zbl 0451.32008  Dor, A.: Proper holomorphic maps from strongly pseudoconvex domains inC 2 to the unit ball inC 3 and boundary interpolation by proper holomorphic maps. Preprint 1987  Faran, J.J.: Maps from the two-ball to the three-ball. Invent. Math.68, 441–475 (1982) · Zbl 0519.32016  Faran, J.J.: On the linearity of proper maps between balls in the low dimensional case. J. Differ. Geom.24, 15–17 (1986) · Zbl 0592.32018  Fefferman, C.: The Bergman kernel and biholomorphic mappings pseudo-convex domains. Invent. Math.26, 1–65 (1974) · Zbl 0289.32012  Forstnerič, F.: Embedding strictly pseudoconvex domains into balls. Trans. Am. Math. Soc.295, 347–368 (1986) · Zbl 0594.32024  Forstnerič, F.: Proper holomorphic maps from balls. Duke Math. J.53, 427–440 (1986) · Zbl 0603.32019  Forstneriĉ, F.: On the boundary regularity of proper holomorphic mappings. Ann. Sc. Norm. Super. Pisa, Cl. Sci, IV. Ser.13, 109–128 (1986) · Zbl 0605.32011  Globevnik, J.: Boundary interpolation by proper holomorphic maps. Math. Z.194, 365–374 (1987) · Zbl 0611.32021  Gunning, R., Rossi, H.: Analytic functions of several complex variables. Englewood Cliffs: Prentice Hall 1965 · Zbl 0141.08601  Halim, M.: Applications holomorphes propres continues de domaines stridctement pseudoconvexes deC n dans la boule unitéC n +1. Preprint 1987  Han, C.K.: Analyticity of C.R. equivalence between some real hypersurfaces inC n , with degenerate Levi form. Invent. Math.73, 51–69 (1983) · Zbl 0517.32007  Lewy, H.: On the boundary behavior of holomorphic mappings. Acad. Naz. Lincei35, 1–8 (1977) · Zbl 0377.31008  Løw, E.: Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls. Math. Z.190, 401–410 (1985) · Zbl 0584.32048  Malgrange, B.: Ideals of differentiable functions. Oxford-London: Oxford University Press 1966 · Zbl 0177.17902  Nirenberg, L., Webster, S., Yang, P.: Local boundary regularity of holomorphic mappings. Commun. Pure Appl. Math.33, 305–338 (1980) · Zbl 0436.32018  Pinĉuk, S.I.: On the analytic continuation of biholomorphic mappings. Mat. Sb. USSR,98, , 416–435, (1975); Math. USSR, Sb.27, 375–392 (1975)  Pinĉuk, S.I.: A boundary uniqueness theorem for holomorphic functions of several complex variables. Mat. Zam.15, 205–212 (1974); Math. Notes, USSR15, 116–120 (1974)  Pinĉuk, S.I.: Holomorphic mappings of real-analytic hypersurfaces. Mat. USSR, Sb.105, 574–593 (1978); Math. USSR. Sb.34, 503–519 (1978)  Poincaré, H.: Les fonctions analytiques de deux variables et la représentation conforme. Rend. Circ. Mat. Palermo. II. Ser.23, 185–220 (1907) · JFM 38.0459.02  Rudin, W.: Function theory on the unit ball ofC n . Berlin-Heidelberg-New York: Springer 1980 · Zbl 0495.32001  Segre, B.: Intorno al problem di Poincaré della rappresentazione pseudo-conform. Rend. Accad. Lincei13, 676–683 (1931) · Zbl 0003.21302  Tanaka, N.: On the pseudo-conformal geometry of hypersurfaces of the space ofn complex variables. J. Math. Soc. Japan14, 397–429 (1962) · Zbl 0113.06303  Trépreau, J.M.: Sur le prolongement des fonctionsCR definis sur une hypersurface réele de classeC 2 dansC n . Invent. Math.83, 583–592 (1986) · Zbl 0586.32016  Vitushkin, A.G.: Real-analytic hypersurfaces in complex manifolds. Usp. Mat. Nauk40, 3–31 (1985); Russ. Math. Surv.40, 1–35 (1985) · Zbl 0588.32025  Webster, S.M.: On the mapping problem for algebraic real hypersurfaces. Invent. Math.43, 53–68 (1977) · Zbl 0355.32026  Webster, S.M.: On mapping ann-ball into an (n+1)-ball in complex space. Pac. J. Math.81, 267–272 (1979) · Zbl 0379.32018  Webster, S.M.: On the reflection principle in several complex variables. Proc. Am. Math. Soc.71, 26–28 (1978) · Zbl 0626.32019  Whitney, H.: Complex analytic varieties. Reading: Addison-Wesley 1972 · Zbl 0265.32008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.