×

The complement of a generic hypersurface of degree 2n in \(CP^ n\) is not hyperbolic. (English) Zbl 0633.32023

Translation from Sib. Mat. Zh. 28, No.3(163), 91-100 (Russian) (1987; Zbl 0625.32021).

MSC:

32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
32H25 Picard-type theorems and generalizations for several complex variables
14C20 Divisors, linear systems, invertible sheaves

Citations:

Zbl 0625.32021
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Sh. Kobayashi, ?Hyperbolic manifolds and holomorphic mappings,? Matematika,17, No. 1, 47-96 (1973).
[2] Sh. Kobayashi, ?Intrinsic distances, measures, and geometric function theory,? Bull. Am. Math. Soc.,82, No. 3, 357-416 (1976). · Zbl 0346.32031
[3] M. G. Zaidenberg, ?On theorems of Brody and Green on conditions for complete hyperbolicity of complex manifolds,? Funkts. Anal. Prilozhen.,14, No. 4, 77-78 (1980).
[4] M. G. Zaidenberg, ?Picard’s theorem and hyperbolicity,? Sib. Mat. Zh.,24, No. 6, 44-55 (1983).
[5] M. G. Zaidenberg, ?On the hyperbolic embeddability of complements of divisors and the limiting behavior of the Kobayashi-Royden metric,? Mat. Sb.,127, No. 1, 55-71 (1984).
[6] V. E. Snurnitsyn, ?The complement of 2n hyperplanes inCP n is not hyperbolic,? Mat. Zametki,40, No. 6 (1986). · Zbl 0622.51019
[7] P. Kiernan, ?Hyperbolic submanifolds of complex projective space,? Proc. Am. Math. Soc.,22, No. 3, 603-606 (1968). · Zbl 0182.11101
[8] S. Kleiman, ?Numerical singularity theory,? Usp. Mat. Nauk,35, No. 6, 69-148 (1980). · Zbl 0451.14020
[9] W. Fulton, St. Kleiman, and R. MacPherson, ?About the enumeration of contacts,? in: Algebraic Geometry-Open Problems, Proc. Ravello Conf., May 31?June 5, 1982; Lect. Notes in Math., Vol. 977, Springer-Verlag, Berlin (1983), pp. 156-196.
[10] I. Vainsencher, ?Counting divisors with prescribed singularities,? Trans. Am. Math. Soc.,667, No. 2, 399-422 (1981). · Zbl 0475.14047
[11] V. S. Kulikov, ?Calculus of singularities of the embedding of a generic algebraic surface in the projective space P3,? Funkts. Anal. Prilozhen.,17, No. 3, 15-27 (1983).
[12] V. I. Arnol’d, ?Singularities of ray systems,? Usp. Mat. Nauk,38, No. 2, 77-148 (1983).
[13] E. E. Landis, ?Tangential singularities,? Funkts. Anal. Prilozhen.,15, No. 2, 36-49 (1981).
[14] W. Fulton and R. Lazarsfeld, ?Connectivity and its applications in algebraic geometry,? in: Algebraic Geometry, Proceedings, Lect. Notes in Math., Vol. 862, Springer-Verlag, Berlin (1981), pp. 29-92. · Zbl 0484.14005
[15] J. Hansen, ?A connectedness theorem for flagmanifolds and grassmanians,? Am. J. Math.,105, No. 2, 633-639 (1983). · Zbl 0544.14034
[16] D. Mumford, Algebraic Geometry, I: Complex Projective Varieties, Springer-Verlag, Berlin-New York (1976). · Zbl 0356.14002
[17] J. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York (1975). · Zbl 0325.20039
[18] I. R. Shafarevich, Basic Algebraic Geometry [in Russian], Nauka, Moscow (1972). · Zbl 0253.14006
[19] M. L. Green, ?some examples and counterexamples in value distribution theory for several variables,? Compos. Math.,30, No. 3, 317-322 (1975).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.