zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finding candidate singular optimal controls: A state of the art survey. (English) Zbl 0633.49015
Pontryagin’s maximum principle gives no information about a singular optimal control if the problem is linear. This survey shows how candidate singular optimal controls may be found for linear and nonlinear problems. A theorem is given on the maximum order of a linear singular problem.
Reviewer: G.Fraser-Andrews

49K15Optimal control problems with ODE (optimality conditions)
93B99Controllability, observability, and system structure
93C05Linear control systems
93C10Nonlinear control systems
49-02Research monographs (calculus of variations)
Full Text: DOI
[1] Bell, D. J., andJacobson, D. H.,Singular Optimal Control Problems, Academic Press, New York, New York, 1975. · Zbl 0296.49011
[2] Athans, M., andFalb, P. L.,Optimal Control, McGraw-Hill, New York, New York, 1966. · Zbl 0196.46303
[3] Bryson, A. E., andHo, Y. C.,Applied Optimal Control, Blaisdell, Waltham, Massachusetts, 1969.
[4] Gabasov, R., andKirillova, F. M.,High-Order Necessary Conditions for Optimality, SIAM Journal on Control, Vol. 10, pp. 127-168, 1972. · Zbl 0236.49005 · doi:10.1137/0310012
[5] Maurer, H.,Numerical Solution of Singular Control Problems Using Multiple Shooting Techniques, Journal of Optimization Theory and Applications, Vol. 18, pp. 235-257, 1976. · Zbl 0302.65063 · doi:10.1007/BF00935706
[6] Powers, W. F.,On the Order of Singular Optimal Control Problems, Journal of Optimization Theory and Applications, Vol. 32, pp. 479-489, 1980. · Zbl 0421.49007 · doi:10.1007/BF00934035
[7] Robbins, H. M.,A Generalized Legendre-Clebsch Condition for the Singular Cases of Optimal Control, IBM Journal, Vol. 11, pp. 361-372, 1967. · Zbl 0153.41202 · doi:10.1147/rd.114.0361
[8] Lewis, R. M.,Definitions of Order and Junction Conditions in Singular Optimal Control Problems, SIAM Journal on Control and Optimization, Vol. 18, pp. 21-32, 1980. · Zbl 0429.49007 · doi:10.1137/0318002
[9] Krener, A. J.,The High-Order Maximum Principle and Its Application to Singular Extremals, SIAM Journal on Control, Vol. 15, pp. 256-293, 1977. · Zbl 0354.49008 · doi:10.1137/0315019
[10] Bell, D. J., andBoissard, M.,Necessary Conditions at the Junction of Singular and Nonsingular Control Subarcs, International Journal of Control, Vol. 29, pp. 981-900, 1979. · Zbl 0413.49021 · doi:10.1080/00207177908922744
[11] Bortins, R.,On Joining Nonsingular and Singular Optimal Control Subarcs, International Journal of Control, Vol. 37, pp. 867-872, 1983. · doi:10.1080/00207178308933015
[12] Bell, D. J.,Lie Brackets and Singular Optimal Control, IMA Journal of Mathematical Control and Information, Vol. 1, pp. 83-94, 1984. · Zbl 0619.93022 · doi:10.1093/imamci/1.1.83
[13] Fraser-Andrews, G.,Numerical Techniques for Singular Optimal Trajectories, PhD Thesis, Hatfield Polytechnic, Hatfield, Hertfordshire, England, 1986.
[14] Leitmann, G.,An Introduction to Optimal Control, McGraw-Hill, New York, New York, 1966. · Zbl 0196.46302
[15] Fraser-Andrews, G.,Numerical Methods for Singular Optimal Control, Journal of Optimization Theory and Applications (to appear). · Zbl 0645.49015