×

zbMATH — the first resource for mathematics

Sur l’invariance topologique de la classe de Godbillon-Vey. (On the topological invariance of the Godbillon-Vey class.). (French) Zbl 0633.58025
L’invariant de Godbillon-Vey, classiquement défini pour les feuilletages de classes \(C^ 2\), peut aussi se définir pour les feuilletages de classe \(C^ 2\) par morceaux. Nous montrons que, dans cette catégorie étendue, l’invariant de Godbillon-Vey n’est pas invariant par conjugaison topologique.
Reviewer: E.Ghys

MSC:
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
37C80 Symmetries, equivariant dynamical systems (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] G. D. BIRKHOFF, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc., 18 (1917), 199-300. · JFM 46.1174.01
[2] R. BOTT, On some formulas for the characteristic classes of group actions, differential topology, foliations and Gelfand-fuks cohomology, proceed. Rio de Janeiro, 1976, Springer Lecture Notes, vol. 652 (1978). · Zbl 0393.57011
[3] R. BOWEN, Anosov foliations are hyperfinite, Ann. of Maths, vol. 106 (1977), 549-565. · Zbl 0374.58008
[4] R. BOWEN, C. SERIES, Markov maps associated with Fuchsian groups, Inst. Hautes Etudes Sci. Pub. Math., n° 50 (1979), 153-170. · Zbl 0439.30033
[5] G. DUMINY, L’invariant de godbillon-vey se localise dans LES feuilles ressort, preprint, Université de Lille (1982).
[6] G. DUMINY, V. SERGIESCU, Sur la nullité de l’invariant de godbillon-vey, C.R. Acad. Sci. Paris, 292 (1981), 821-824. · Zbl 0473.57015
[7] A. FATHI, F. LAUDENBACH, V. POÉNARU, Travaux de Thurston sur LES surfaces, Astérisque, 66-67 (1979). · Zbl 0406.00016
[8] D. FRIED, Transitive Anosov flows and pseudo-Anosov maps, Topology, vol 22, n° 3 (1983), 299-303. · Zbl 0516.58035
[9] D. B. FUCHS, A. M. GABRIELOV, I. M. GELFAND, The Gauss-Bonnet theorem and the Atiyah - patodi - Singer functionals for the characteristic classes of foliations, Topology, 15 (1976), 165-188. · Zbl 0347.57009
[10] E. GHYS, Flots d’Anosov dont LES feuilletages stables sont différentiables, Ann. Scient. Éc. Norm. Sup., 20 (1987), 251-270. · Zbl 0663.58025
[11] E. GHYS, V. SERGIESCU, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helvetici, 62 (1987), 185-239. · Zbl 0647.58009
[12] E. GHYS, T. TSUBOI, Différentiabilité des conjugaisons entre systèmes dynamiques de dimension 1, à paraître aux Annales de l’Institut Fourier, Grenoble, 38-1 (1988). · Zbl 0633.58018
[13] C. GODBILLON, J. VEY, Un invariant des feuilletages de codimension 1, C.R. Acad. Sci. Paris, 273 (1971), 92-95. · Zbl 0215.24604
[14] M. HERMAN, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Pub. Math., n° 49 (1978), 5-234. · Zbl 0448.58019
[15] S. HURDER, The godbillon measure for amenable foliations, J. Differential Geometry, 23 (1986), 347-365. · Zbl 0605.57015
[16] S. HURDER, A. KATOK, Differentiability, rigidity and godbillon-vey classes for Anosov foliations, preprint, University of Illinois (1986). · Zbl 0725.58034
[17] H. B. LAWSON, Lectures on the quantitative theory of foliations, Nat. Sci. Foundations Regional Conf., Saint-Louis (1975) Am. Math. Soc.
[18] J. MATHER, The vanishing of the homology of certain groups of homeomorphisms, Topology, 10 (1971), 297-298. · Zbl 0207.21903
[19] Y. MITSUMATSU, A relation between the topological invariance of the godbillon-vey invariant and the differentiability of Anosov foliations, Advanced Studies in Pure Mathematics, University of Tokyo 5 (1985). · Zbl 0653.57018
[20] R. MOUSSU, F. PELLETIER, Sur le théorème de Poincaré-Bendixson, Ann. Inst. Fourier, 24-1 (1974), 131-148. · Zbl 0273.57008
[21] I. NIVEN, Irrational numbers, The Corus mathematical monographs (Math. Ass. of America) n° 11 (1956). · Zbl 0070.27101
[22] G. RABY, L’invariant de godbillon-vey est stable par C¹-difféomorphisme, à paraître aux Annales de l’Institut Fourier, Grenoble, 38-1 (1988). · Zbl 0596.57018
[23] P. A. SCHWEITZER, editor, Some problems in foliation theory and related area, differential topology, foliations and Gelfand-fuks cohomology, Rio de Janeiro (1976), Springer Lecture Notes in Math., 652 (1978), 240-252. · Zbl 0377.57001
[24] T. TSUBOI, On the foliated products of class C1, preprint. · Zbl 0701.57012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.