# zbMATH — the first resource for mathematics

Multiplicité des trajectoires fermées de systèmes hamiltoniens connexes. (Multiplicity of closed trajectories of convex Hamiltonian systems). (French) Zbl 0633.58034
Let $$S\subset R^{2n}$$ be a compact hypersurface of class $$C^ 2$$, being the boundary of an open convex set containing the origin, for $$x\in S$$ let n(x) be the unit outward normal vector of S and $$J=\left[ \begin{matrix} 0\\ -I_ n\end{matrix} \begin{matrix} I_ n\\ 0\end{matrix} \right]$$. The following theorem is proved: if $$n\geq 3$$, and S has a strictly positive Gaussian curvature then the flow $$\dot x=Jn(x)$$ over S has two closed trajectories, at least. This theorem has the following corollary: if $$H: R^{2n}\mapsto R$$ is of class $$C^ 2$$, the level surface $$S=H^{- 1}(h)$$ satisfies the conditions above, and $$H'(x)=0$$, $$x\in S$$ then the problem $$\dot x=JH'(x)$$, $$x(0)=x(T)$$, $$H(x)=h$$ has two solutions $$(x_ 1,T_ 1)$$, $$(x_ 2,T_ 2)$$, at least $$(x_ 1\neq x_ 2)$$.
Reviewer: M.Farkas

##### MSC:
 37G99 Local and nonlocal bifurcation theory for dynamical systems
Full Text:
##### References:
 [1] Seifert, H., Periodiche bewegungen mekanischer systemen, Math. Zeit., vol. 51, 197-216, (1948) · Zbl 0030.22103 [2] A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math., vol. 108, 1078, p. 507-518. · Zbl 0403.58001 [3] Clarke, F., Periodic solutions to ha inclusions, J. Diff. Equ., vol. 40, 1-6, (1981) · Zbl 0461.34030 [4] Rabinowitz, P. H., Periodic solutions of Hamiltonian systems, Comm. Pure. Appl. Math., vol. 31, 36-68, (1978) [5] Ekeland, I., Une théorie de Morse pour LES systèmes hamiltoniens convexes, Annales I.H.P., Analyse non linéaire, vol. 1, 19-78, (1984) · Zbl 0537.58018 [6] Weinstein, A., Normal modes for non linear Hamiltonian systems, Inv. Math., vol. 20, 47-57, (1973) · Zbl 0264.70020 [7] Ekeland, I.; Lasry, J. M., On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., vol. 12, 283-319, (1980) · Zbl 0449.70014 [8] Berestycki, H.; Lasry, J. M.; Ruf, B.; Mancini, G., Existence of multiple periodic orbits on star‐shaped Hamiltonians surfaces, Comm. Pure. Appl. Math., vol. 38, 252-290, (1985) [9] I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Nonlinear functional analysis and its applications, F. Browder ed., Proceedings of Symposia in Pure Math., 45, 1986, p. 395-423. [10] Yakubovich, V.; Starzhinsky, V., Linear differential equations with periodic coefficients, (1980), Halsdedt Press, Wiley [11] C. Viterbo, Indice des points critiques obtenus par minimaux (à paraître). · Zbl 0695.58007 [12] Ekeland, I.; Lassoued, L., Un llot hamiltonien a au moins deux trajectoires fermées sur toute surface d’énergie convexe et bornée, C.R. Acad. Sc., t. 301, série I, 162-164, (1985) · Zbl 0588.58013 [13] Rabinowitz, P. H., Periodic solutions of a Hamiltonian system on a prescribed energy surface, J. Diff. Eq., vol. 33, 336-352, (1979) · Zbl 0424.34043 [14] Glück-Ziller, Exixtence of periodic motions of conservative systems, Seminar on minimal submanifolds, (1983), Princeton University Press · Zbl 0546.58040 [15] Hayashi, Periodic solutions of classical Hamiltonian systems, Tokyo J. Math., vol. 6, (1983) · Zbl 0498.58010 [16] Benci, V., Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré, Analyse non linéaire, 1, 401-411, (1984) · Zbl 0588.35007 [17] A. Szulkin, Communication personnelle, décembre 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.