zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal martingale estimating equations in a stochastic process. (English) Zbl 0633.62086
A discrete-time process X is given depending on an unknown parameter which is to be estimated and on some additional nuisance parameters. The optimal estimator is found as a solution to the martingale estimating equation being the generalization of the maximum likelihood equation. An optimality criterion is proposed generalizing that of {\it V. P. Godambe} [Biometrika 72, 419-428 (1985; Zbl 0584.62135)]. An application to first order autoregression processes with error variances varying in time is given.
Reviewer: B.Gołdys
MSC:
62M09Non-Markovian processes: estimation
WorldCat.org
Full Text: DOI
References:
[1] Bhapkar, V. P.: On a measure of efficiency of an estimating equation. Sankhya A 34, 167-472 (1972) · Zbl 0267.62012
[2] Cox, D. R.: Partial likelihood. Biometrika 62, 269-276 (1975) · Zbl 0312.62002
[3] Godambe, V. P.: An optimum property of regular maximum likelihood estimation. Ann. math. Statist. 31, 1208-1211 (1960) · Zbl 0118.34301
[4] Godambe, V. P.: Conditional likelihood and unconditional optimum estimating equations. Biometrika 63, 277-284 (1976) · Zbl 0339.62013
[5] Godambe, V. P.: On ancillarity and Fisher information in the presence of a nuisance parameter. Biometrika 71, 626-629 (1984) · Zbl 0566.62005
[6] Godambe, V. P.: The foundations of finite sample estimation in stochastic processes. Biometrika 72, 419-428 (1985) · Zbl 0584.62135
[7] Godambe, V. P.; Thompson, M. E.: Estimating equations in the presence of nuisance parameters. Ann. statist. 2, 568-571 (1974) · Zbl 0283.62029
[8] Godambe, V. P.; Thompson, M. E.: Robust estimatioon through estimating equations. Biometrika 71, 115-125 (1978) · Zbl 0554.62030
[9] Heyde, C.C. (1985), Personal communication.
[10] Lindsay, B. G.: Nuisance parameters, mixture models and efficiency of partial liikelihood estimation. Phil. trans. R. soc. A 296, 639-665 (1980) · Zbl 0434.62028
[11] Lindsay, B. G.: Conditional score functions: some optimality results. Biometrika 69, 503-512 (1982) · Zbl 0498.62007
[12] Williams, E. J.: Some classes of conditionnal inference procedures. Adv. appl. Prob. 19A, 293-303 (1982)