Hu, Chiu Li; Schumaker, Larry L. Complete spline smoothing. (English) Zbl 0633.65015 Numer. Math. 49, 1-10 (1986). Vorgegeben seien natürliche Zahlen n, m, reelle Zahlen \(x_ 1,...,x_ n\) (mit \(x_ 1<...<x_ n)\), \(S^ 1_ L,...,S_ L^{m-1}\), \(S^ 1_ R,...,S_ R^{m-1}\) sowie positive relle Zahlen \(w,w_ 1,...,w_ n\), \(w_ 1^ L,...,w^ L_{m-1}\), \(w^ R_ 1,...,w^ R_{m-1}\). Die Minimierung von \[ I(f):=\int^{x_ n}_{x_ 1}(f^{(m)}(t))^ 2dt+w\sum^{n}_{i=1}\{w_ i[f(x_ i)-z_ i]^ 2 \]\[ +\sum^{m- 1}_{i=1}w^ L_ i[f^{(i)}(x_ 1)-S^ i_ L]^ 2+\sum^{m- 1}_{i=1}w^ R_ i[f^{(i)}(x_ n)-S^ i_ R]^ 2\} \] auf eine geeigneten Funktionenraum führt auf eine Polynom-Spline \(s_ w\) der Ordnung 2m (vom Grad 2m-1), den sogenannten Complete Smoothing Spline. Zur Berechnung von \(s_ w\) wird eine B-Spline-Basis benutzt; die Koeffizienten ergeben sich dann aus einem linearen Gleichungssystem, dessen Matrix Bandstruktur besitzt. Weiter kann man auf iterativem Wege w so festlegen, daß für \(s_ w\) der Ausdruck in \(\{\)...\(\}\) unter einer vorgegebenen Toleranzschranke bleibt. Neben der Behandlung dieser univarianten Problemstellung wird ein analoges bivariates Problem untersucht und ein entsprechendes Lösungsverfahren angegeben; dabei wird von einem Rechteckgitter ausgegangen, und es werden Tensorprodukt-B- Splines verwendet. Reviewer: C.Geiger Cited in 2 Documents MSC: 65D10 Numerical smoothing, curve fitting 41A15 Spline approximation 41A63 Multidimensional problems 65D05 Numerical interpolation Keywords:complete sline smoothing; fitting; tensor-product natural splines; complete spline interpolation; bivariate interpolation; bivariate complete smoothing; scattered data PDFBibTeX XMLCite \textit{C. L. Hu} and \textit{L. L. Schumaker}, Numer. Math. 49, 1--10 (1986; Zbl 0633.65015) Full Text: DOI EuDML References: [1] Anselone, P.M., Laurent, P.J.: A general method for the construction of interpolating and smoothing spline functions. Numer. Math.12, 66-82 (1968) · Zbl 0197.13501 · doi:10.1007/BF02170998 [2] Baszenski, G., L.L. Schumaker: The tensor-product scheme of Abstract smoothing splines. (To appear in Proc. Haar Memorial Conf., Budapest) [3] deBoor, C.: Efficient computer manipulation of tensor products. ACM Trans. Math. Softwere5, 173-182 (1979) · Zbl 0405.65011 · doi:10.1145/355826.355831 [4] Dierckx, P.: An algorithm for surface fitting with spline functions. IMA J. Numer. Anal.1, 267-283 (1981) · Zbl 0469.65006 · doi:10.1093/imanum/1.3.267 [5] Dierckx, P.: A fast algorithm for smoothing data on a rectangular grid while using splines. SIAM J. Numer. Anal.19, 1286-1304 (1982) · Zbl 0493.65003 · doi:10.1137/0719093 [6] Dyn, N., G. Wahba: On the estimation of functions of several variables from aggregated data. SIAM J. Math. Anal.13, 134-152 (1982) · Zbl 0488.65079 · doi:10.1137/0513010 [7] Franke, R.: A critical comparison of some methods for interpolation of scattered data. Rpt. NPS-53-79-003, Naval Postgraduate School, Monterey, CA: 1979 · Zbl 0476.65005 [8] Hayes, J.G., Halliday, J.: The least-squares fitting of cubic spline surfaces to general date sets. J. Inst. Math. Appl.14, 89-103 (1974) · Zbl 0284.65005 · doi:10.1093/imamat/14.1.89 [9] Hu, C., Schumaker, L.L.: Bivariate natural spline smoothing, in Delay Equations. Approximation and Application (G. Meinardus, G. Nurnberger, eds.) pp. 165-179. Basel: Birkhauser 1985 · Zbl 0561.41011 [10] Larkin, F.M.: Optimal estimation of bounded linear functionals from noisy data. IFIP CongressTA-1-89-98 (1971) [11] Lyche, T., Schumaker, L.L.: Computation of smoothing and interpolating natural splines via local bases. SIAM J. Numer. Anal.10, 1027-1038 (1973) · doi:10.1137/0710085 [12] Lyche, T., Sepehrnoori, K., Schumaker, L.L.: Fortran subroutines for computing smoothing and interpolating natural splines. Adv. Eng. Software5, 2-5 (1983) · Zbl 0514.41003 [13] Nielson, G.: Smoothing and interpolating splines. PhD dissertation, Univ. of Utah, 1972 · Zbl 0286.65003 [14] Reinsch, C.H.: Smoothing by spline functions. Numer. Math.10, 177-183 (1967) · Zbl 0161.36203 · doi:10.1007/BF02162161 [15] Reinsch, C.H.: Smoothing by spline functions II. Numer. Math.16, 451-454 (1971) · Zbl 1248.65020 · doi:10.1007/BF02169154 [16] Schoenberg, I.J.: Spline functions and the problem of graduation. Proc. Natl. Acad. Sci. USA52, 947-950 (1964) · Zbl 0147.32102 · doi:10.1073/pnas.52.4.947 [17] Schumaker, L.L.: Fitting surfces to scattered data. In: Approximation Theory II (G.G. Lorentz, C.K. Chui, L.L. Schumaker eds.), pp. 203-268. New York: Academic Press 1976 [18] Schumaker, L.L.: Spline Functions: Basic Theory. New York: John Wiley 1981 · Zbl 0449.41004 [19] Wahba, G., Wendelberger, J.: Some new mathematical methods for variational objective analysis using splines and cross-validation. Mon. Weather Rev.108, 1122-1143 (1980) · doi:10.1175/1520-0493(1980)108<1122:SNMMFV>2.0.CO;2 [20] Woodford, C.H.: An algorithm for data smoothing using spline functions. BIT10, 501-510 (1971) · Zbl 0214.41402 · doi:10.1007/BF01935569 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.