×

zbMATH — the first resource for mathematics

A convergence theorem for Newton-like methods in Banach spaces. (English) Zbl 0633.65049
A general convergence theorem and a simple principle for finding sharp error bounds (including some well-known results) for Newton-like methods under Kantorovich type assumptions are established.
Reviewer: J.Kolomý

MSC:
65J15 Numerical solutions to equations with nonlinear operators (do not use 65Hxx)
47J25 Iterative procedures involving nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Andrew, A.L.: Error bounds for the modified Newton’s method. Bull. Aust. Math. Soc.14, 427-433 (1976) · Zbl 0337.65034 · doi:10.1017/S0004972700025351
[2] Andrew, A.L.: Existence and uniqueness regions for solutions of nonlinear equations. Bull. Aust. Math. Soc.19, 277-282 (1978) · Zbl 0395.47016 · doi:10.1017/S000497270000873X
[3] Dennis, J.E.: On the Kantorovich hypothesis for Newton’s method. SIAM J. Numer. Anal.6, 493-507 (1969) · Zbl 0221.65098 · doi:10.1137/0706045
[4] Dennis, J.E.: On the convergence of Newton-like methods. In: Numerical methods for nonlinear algebraic equations (P. Rabinowitz, ed.), pp. 163-181. New York: Gordon and Breach 1970
[5] Dennis, J.E.: Toward a unified convergence theory for Newton-like methods. In: Nonlinear functional analysis and applications (L.B. Rall, ed.), pp. 425-472. New York: Academic Press 1971 · Zbl 0276.65029
[6] Deuflhard, P., Heindl, G.: Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal.16, 1-10 (1979) · Zbl 0395.65028 · doi:10.1137/0716001
[7] Döring, B.: Über das Newtonsche Näherungsverfahren. Math. Phys. Sem.-Ber.16, 27-40 (1969) · Zbl 0193.12003
[8] Gragg, W.B., Tapia, R.A.: Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal.11, 10-13 (1974) · Zbl 0284.65042 · doi:10.1137/0711002
[9] Kantorovich, L.V.: On Newton’s method for functional equations. Dokl. Akad. Nauk SSSR59, 1237-1240 (1948)
[10] Kantorovich, L.V.: The majorant principle and Newton’s method. Dokl. Akad. Nauk SSSR76, 17-20 (1951)
[11] Kantorovich, L.V., Akilov, G.P.: Functional analysis in normed spaces. Oxford: Pergamon Press 1964 · Zbl 0127.06104
[12] Kornstaedt, H.J.: Funktional Ungleichungen und Iterationsverfahren. Acquat. Math.13, 21-45 (1975) · Zbl 0354.65029 · doi:10.1007/BF01834116
[13] Lancaster, P.: Error analysis for the Newton-Raphson method. Numer. Math.9, 55-68 (1966) · Zbl 0173.17801 · doi:10.1007/BF02165230
[14] Miel, G.J.: The Kantorovich theorem with optimal error bounds. Am. Math. Mon.86, 212-215 (1979) · Zbl 0407.65023 · doi:10.2307/2321528
[15] Miel, G.J.: Unified error analysis for Newton-type methods. Numer. Math.33, 391-396 (1970) · Zbl 0402.65038 · doi:10.1007/BF01399322
[16] Miel, G.J.: Majorizing sequences and error bounds for iterative methods. Math. Comput.34, 185-202 (1980) · Zbl 0425.65033 · doi:10.1090/S0025-5718-1980-0551297-4
[17] Miel, G.J.: An updated version of the Kantorovich theorem for Newton’s method. Computing27, 237-244 (1981) · Zbl 0458.65046 · doi:10.1007/BF02237981
[18] Moret, I.: A note on Newton type iterative methods. Computing33, 65-73 (1984) · Zbl 0532.65045 · doi:10.1007/BF02243076
[19] Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970 · Zbl 0241.65046
[20] Ostrowski, A.M.: La method de Newton dans les espaces de Banach, C.R. Acad. Sci. Paris27(A), 1251-1253 (1971) · Zbl 0228.65041
[21] Ostrowski, A.M.: Solution of equations in Euclidean and Banach spaces. New York: Academic Press 1973 · Zbl 0304.65002
[22] Potra, F.A.: On the convergence of a class of Newton-like methods. In: Iterative solution of nonlinear systems of equations (R. Ansarge, W. Torning, eds.), pp. 125-137. Lecture Notes in Math. 953. Berlin, Heidelberg, New York: Springer 1982
[23] Potra, F.A.: On the aposteriori error estimates for newton’s method. Beitr. Numer. Math.12, 125-138 (1984) · Zbl 0556.65048
[24] Potra, F.A., Ptak, V.: Sharp error estimates for Newton’s process. Numer. Math.34, 63-72 (1980) · Zbl 0434.65034 · doi:10.1007/BF01463998
[25] Rall, L.B.: Computational solution of nonlinear operator equations. Huntington, New York: Krieger 1970 · Zbl 0175.15804
[26] Rall, L.B., Tapia, R.A.: The Kantorovich theorem and error estimates for Newton’s method. MRC Technical Summary Report Nr. 1043. University of Wisconsin-Madison 1970
[27] Rheinboldt, W.C.: A unified convergence theory for a class of iterative process. SIAM J. Numer. Anal.5, 42-63 (1968) · Zbl 0155.46701 · doi:10.1137/0705003
[28] Schmidt, J.W.: Regular-falsi-Verfahren mit konsistenter Steigung und Majorantenprinzip. Periodica Math. Hung.5, 187-193 (1974) · Zbl 0291.65017 · doi:10.1007/BF02023198
[29] Schmidt, J.W.: Unter Fehrerschranken für Regular-falsi-Verfahren. Period. Math. Hung.9, 241-247 (1978) · Zbl 0401.65036 · doi:10.1007/BF02018090
[30] Tapida, R.A.: The Kantorovich theorem for Newton’s method. Am. Math. Mon.78, 389-392 (1971) · Zbl 0215.27404 · doi:10.2307/2316909
[31] Yamamoto, T.: Error bounds for Newton’s process derived from the Kantorovich theorem. Jap. J. Appl. Math.2, 285-292 (1985) · Zbl 0624.65046 · doi:10.1007/BF03167078
[32] Yamamoto, T.: Error bounds for Newton’s iterates derived from the Kantorovich theorem. Numer. Math.2, 285-292 (1986) · Zbl 0567.65027
[33] Yamamoto, T.: A unified derivation of several error bounds for Newton’s process. J. Comput. Appl. Math.12 & 13, 179-191 (1985) · Zbl 0582.65047 · doi:10.1016/0377-0427(85)90015-9
[34] Yamamoto, T.: Error bounds for Newton-like methods under Kantorovich type assumptions. MRC Technical Summary Report Nr. 2846. University of Wisconsin-Madison 1985 · Zbl 0618.65047
[35] Yamamoto, T.: A convergence theorem for Newton’s method in Banach spaces. Jap. J. Appl. Math.3, 37-52 (1986) · Zbl 0618.65045 · doi:10.1007/BF03167090
[36] Yamamoto, T.: A method for finding sharp error bounds for Newton’s method under the Kantorovich assumptions. Numer. Math.49, 203-220 (1986) · Zbl 0607.65033 · doi:10.1007/BF01389624
[37] Yamamoto, T.: On the method of tangent hyperbolas in Banach spaces. J. Comput. Appl. Math. (1988) (to appear) · Zbl 0632.65070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.