# zbMATH — the first resource for mathematics

A justification of the Marguerre-von Kármán equations. (English) Zbl 0633.73069
In two particular cases of the mathematical problem of nonlinear thin elastic shells, the authors show, without any a priori assumptions, that the solution is of a Kirchhoff-Love (K-L) type for the displacements, while the stresses are affine in the normal coordinate. These particular cases, which make the demonstrations possible, are those of shallow shells either with a clamped boundary, or with admissible boundary displacements parallel to the given plane of the middle surface boundary, the so-called Marguerre-Von Kármán problem.
The method follows globally that one already utilized by the first author and P. Destuynder for linear and nonlinear plates [e.g. Comput. Methods Appl. Mech. Engin. 17-18, 227-258 (1979; Zbl 0405.73050) and J. Mec. Paris 18, 315-344 (1979; Zbl 0415.73072)], i.e. an asymptotic method applied to the mixed variational three-dimensional principle of Hellinger-Reissner, the small parameter being the thickness $$\epsilon$$ of the shell. The shallowness assumption which insures the orientation preserving condition of the maps, is such that the normal coordinate and normal deflection be of order of $$\epsilon$$.
The demonstration is given by several theorems, for the two cases under consideration. The first step defines consistent orders of magnitude for the unknowns and data, and provides the leading terms of the variational equations. The next step shows the equivalence of the problem with a two- dimensional (2-D) one for the middle surface. The proof is carried out in the isotropic case by considering successively the equations relative to each unknown component. The results are that the displacement is of a K-L type and the tangential stresses affine in the normal coordinate, the coefficients being the membrane and bending surface stresses, which are thus made conspicuous. Then the other stress components are calculated in terms of the 2-D solution. The last step shows the equivalence to the second boundary value problem of Marguerre-Von Kármán equations by the use of a Airy stress function under global boundary closure conditions for the given loads. The equations are not too much complicated and the solution is shown to be unique. Existence is not treated but good references are given.
To summarize, the author has shown that the classical assumptions are confirmed i.e. K-L type for the displacements, linear, quadratic, or cubic variations of the stress components, depending on the case, with respect to the normal coordinate, as in case of plates. In conclusion, this article devoted to a difficult mathematical and attractive problem is particularly clear. The proofs are easily followed with precise assumptions, functional spaces, and details. Having chosen restrictive conditions for sake of rigour, the author provides a mathematical justification for the nonlinear case of the classical thin shell assumptions. May we think that there remains some doubt in more general cases?
Reviewer: R.Valid

##### MSC:
 74K15 Membranes 74S30 Other numerical methods in solid mechanics (MSC2010) 74G30 Uniqueness of solutions of equilibrium problems in solid mechanics 74H25 Uniqueness of solutions of dynamical problems in solid mechanics 46N99 Miscellaneous applications of functional analysis
Full Text:
##### References:
  Adams, R.A. (1975): Sobolev spaces. New York: Academic Press · Zbl 0314.46030  Antman, S.S. (1976): Ordinary differential equations of nonlinear elasticity, II: Existence and regularity theory for conservative boundary value problems. Arch. Rat. Mech. Anal. 61, 353-393 · Zbl 0354.73047  Ball, J.M. (1977): Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63, 337-403 · Zbl 0368.73040  Berger, M.S. (1967): On von K?rm?n’s equations und the buckling of a thin elastic plate I. Comm. Pure Appl. Math. 20, 687-718 · Zbl 0162.56405  Berger, M.S. (1977): Nonlinearity and functional analysis. New York: Academic Press · Zbl 0368.47001  Berger, M.S.; Fife, P.C. (1968): von K?rm?n’s equations und the buckling of a thin elastic plate, II. Comm. Pure Appl. Math. 21, 227-247 · Zbl 0162.56501  Caillerie, D. (1980): The effect of a thin inclusion of high rigidity in an elastic body, Math. Meth. in the Appl. Sci. 2, 251-270 · Zbl 0446.73014  Ciarlet, P.G. (1980): A justification on the von Karman equations. Arch. Rat. Mech. Anal. 73, 349-389 · Zbl 0443.73034  Ciarlet, P.G. (1985): Elasticit? tridimensionnelle. Paris: Masson · Zbl 0572.73027  Ciarlet, P.G. (1986): Mathematical elasticity, vol. 1. Amsterdam: North-Holland  Ciarlet, P.G.; Destuynder, P. (1979a): A justification of the two-dimensional linear plate model. J. Mecanique 18, 315-344 · Zbl 0415.73072  Ciarlet, P. G.; Destuynder, P. (1979b): A justification of a nonlinear model in plate theory. Comp. Methods Appl. Mech. Eng. 17/18, 227-258 · Zbl 0405.73050  Ciarlet, P.G.; Kesavan, S. (1980): Two-dimensional approximations of three-dimensional eigenvalues in plate theory. Comput. Methods Appl. Mech. Eng. 26, 149-172 · Zbl 0489.73057  Ciarlet, P.G.; Paumier, J.C. (1985): Une justification des ?quations de Marguerre-von K?rm?n pour les coques peu profondes. Paris: C.R. Acad. Sci. 301, S?r. 1, 857-860 · Zbl 0594.73066  Ciarlet, P.G.; Rabier, P. (1980): Les equations de von K?rm?n. Lectures notes in mathematics, vol. 826. Berlin, Heidelberg, New York: Springer · Zbl 0433.73019  Davet, J.L. (1985): Justification de mod?les de plaques non lin?aires pour des lois de comportement g?n?rales. Mod?lisation et Analyse Num?r. (to appear)  Deny, J.; Lions, J.-L. (1953): Les espaces du type de Beppo Levi. Ann. Institut Fourier (Grenoble) V, 305-370 · Zbl 0065.09903  Destuynder, P. (1980): Sur une justification des mod?les de plaques et de coques par les m?thodes asymptotiques. Thesis, Universit? Pierre et Marie Curie, Paris  Destuynder, P. (1981): Comparaison entre les mod?les tridimensionnels et bidimensionnels de plaques en ?lasticit?. RAIRO Analyse Num?r. 15, 331-369 · Zbl 0479.73042  Destuynder, P. (1986): Une th?orie asymptotique des plaques minces en elasticit? lin?aire. Paris: Masson · Zbl 0627.73064  Dikmen, M. (1982): Theory of thin elastic shells. Boston: Pitman · Zbl 0478.73043  Germain, P. (1972): M?canique des milieux continus, Tome 1. Paris: Masson · Zbl 0242.73005  Green, A.E.; Zerna, W. (1968): Theoretical elasticity. University Press, Oxford  Gurtin, M.E. (1981): Introduction to continuum mechanics. New York: Academic Press · Zbl 0559.73001  Hanyga, A. (1985): Mathematical theory of non-linear elasticity. Warszawa: Polish Sci. and Chichester: Ellis Horwood · Zbl 0561.73011  von Karman, T.; Tsien, H.S. (1939): The buckling of spherical shells by external pressure. J. Aero. Sci. 7 · JFM 65.1489.02  Kesavan, S.; Srikanth, P.N. (1984): On the Dirichlet problem for the Marguerre equations, to appear · Zbl 0515.35016  Koiter, W.T. (1970): On the nonlinear theory of thin elastic shells, Part 111, Proc. Kond. Ned. Akad. Wetensch B69 · Zbl 0213.27002  Ladyzhenskaya, O.A. (1969): The mathematical theory of viscous incompressible flows. New York: Gordon & Breach · Zbl 0184.52603  Lions, J.L. (1973): Perturbations singuli?res dans les problems aux limites et en contr?le optimal. Lecture notes in mathematics, vol. 323. Berlin, Heidelberg, New York: Springer · Zbl 0268.49001  Marguerre, K. (1938): Zur Theorie der gekr?mmten Platte gro?er Form?nderung. In: Proc. of the Fifth Intern. Congr. for Appl. Mech., pp. 93-101 · JFM 65.0946.01  Marsden, J.E.; Hughes, T.J.R. (1983): Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall · Zbl 0545.73031  Ne?as, J. (1967): Les methodes directes en th?orie des equations elliptiques. Paris: Masson  Paumier, J.C. (1985): Thesis, Universit? Pierre et Marie Curie  Rao Bo Peng (1986) : (to appear)  Raoult, A. (1985): Construction d’un mod?le d’?volution de plaques avec terme d’inertie de rotation. Annali di Matematica Pura ed Applicata CXXXIX, 361-400 · Zbl 0596.73033  Rupprecht, G. (1981): A singular perturbation approach to nonlinear shell theory, Rocky Mountain J. Math. 11, 75-98 · Zbl 0468.73075  Schwartz, L. (1967): Cours d’analyse. Paris: Hermann · Zbl 0171.01301  Stoker, J.J. (1968): Nonlinear elasticity. New York: Gordon and Breach · Zbl 0187.45801  Temam, R. (1977): Navier-stokes equations. Amsterdam: North-Holland · Zbl 0383.35057  Truesdell, C.; Noll, W. (1965): The non-linear field theories of mechanics. In: Handbuch der Physik, vol. III/3. Berlin, Heidelberg, New York: Springer · Zbl 0779.73004  Wang, C.-C.; Truesdell, C. (1973): Introduction to rational elasticity. Groningen: Noordhoff · Zbl 0308.73001  Washizu, K. (1975): Variational methods in elasticity and plasticity, second ed. Oxford: Pergamon · Zbl 0339.73035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.