zbMATH — the first resource for mathematics

A framework for globally optimizing mixed-integer signomial programs. (English) Zbl 1303.90074
Summary: Mixed-integer signomial optimization problems have broad applicability in engineering. Extending the Global Mixed-Integer Quadratic Optimizer, GloMIQO [R. Misener and C. A. Floudas, J. Glob. Optim. 57, No. 1, 3–50 (2013; Zbl 1272.90034)], this manuscript documents a computational framework for deterministically addressing mixed-integer signomial optimization problems to \(\varepsilon\)-global optimality. This framework generalizes the GloMIQO strategies of (1) reformulating user input, (2) detecting special mathematical structure, and (3) globally optimizing the mixed-integer nonconvex program. Novel contributions of this paper include: flattening an expression tree towards term-based data structures; introducing additional nonconvex terms to interlink expressions; integrating a dynamic implementation of the reformulation-linearization technique into the branch-and-cut tree; designing term-based underestimators that specialize relaxation strategies according to variable bounds in the current tree node. Computational results are presented along with comparison of the computational framework to several state-of-the-art solvers.

90C11 Mixed integer programming
90C26 Nonconvex programming, global optimization
Full Text: DOI
[1] Misener, R.; Floudas, C.A., Glomiqo: global mixed-integer quadratic optimizer, J. Glob. Optim., (2012) · Zbl 1272.90034
[2] Misener, R.; Floudas, C.A., Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations, Math. Program., Ser. B, 136, 155-182, (2012) · Zbl 1257.90079
[3] Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically-generated cutting planes for mixed-integer quadratically-constrained quadratic programs and their incorporation into GloMIQO 2.0 (2012). Submitted for Publication · Zbl 1325.90071
[4] Duffin, R.J.; Peterson, E.L., Duality theory for geometric programming, SIAM J. Appl. Math., 14, 1307-1349, (1966) · Zbl 0203.21902
[5] Duffin, R.J.; Peterson, E.L., Geometric programming with signomials, J. Optim. Theory Appl., 11, 3-35, (1973) · Zbl 0238.90069
[6] Blau, G.E.; Wilde, D.J., Generalized polynomial programming, Can. J. Chem. Eng., 47, 317-326, (1969)
[7] Passy, U.; Wilde, D.J., Generalized polynomial optimization, SIAM J. Appl. Math., 15, 1344-1356, (1967) · Zbl 0171.18002
[8] Maranas, C.D.; Floudas, C.A., Global optimization in generalized geometric programming, Comput. Chem. Eng., 21, 351-369, (1997)
[9] Floudas, C.A.; Ciric, A.R., Strategies for overcoming uncertainties in heat exchanger network synthesis, Comput. Chem. Eng., 13, 1133-1152, (1989)
[10] Quesada, I.; Grossmann, I.E., Global optimization algorithm for heat exchanger networks, Ind. Eng. Chem. Res., 32, 487-499, (1993)
[11] Kallrath, J.; Ciriani, T.A. (ed.), Mixed-integer nonlinear programming applications, (1999), West Lafayette
[12] Maranas, C.D.; Floudas, C.A., A global optimization approach for lennard-Jones microclusters, J. Chem. Phys., 97, 7667-7678, (1992)
[13] Maranas, C.D.; Floudas, C.A., Global optimization for molecular conformation problems, Ann. Oper. Res., 42, 85-117, (1993) · Zbl 0774.90088
[14] Aggarwal, A.; Floudas, C.A., Synthesis of heat integrated nonsharp distillation sequences, Comput. Chem. Eng., 16, 89-108, (1992)
[15] Kokossis, A.C.; Floudas, C.A., Optimization of complex reactor networks-II. nonisothermal operation, Chem. Eng. Sci., 49, 1037-1051, (1994)
[16] Kallrath, J.; Floudas, C.A. (ed.); Pardalos, P.M. (ed.), Exact computation of global minima of a nonconvex portfolio optimization problem, (2003), Dordrecht
[17] Lin, X.; Floudas, C.A.; Kallrath, J., Global solution approach for a nonconvex MINLP problem in product portfolio optimization, J. Glob. Optim., 32, 417-431, (2005) · Zbl 1098.90098
[18] Hatzimanikatis, V.; Floudas, C.A.; Bailey, J.E., Analysis and design of metabolic reaction networks via mixed-integer linear optimization, AIChE J., 42, 1277-1292, (1996)
[19] Hatzimanikatis, V.; Floudas, C.A.; Bailey, J.E., Optimization of regulatory architectures in metabolic reaction networks, Biotechnol. Bioeng., 52, 485-500, (1996)
[20] Baliban, R.C.; Elia, J.A.; Floudas, C.A., Optimization framework for the simultaneous process synthesis, heat and power integration of a thermochemical hybrid biomass, coal, and natural gas facility, Comput. Chem. Eng., 35, 1647-1690, (2011)
[21] Misener, R., Floudas, C.A.: ANTIGONE: algorithms for coNTinuous integer global optimization of nonlinear expressions (2013). Submitted for Publication · Zbl 1301.90063
[22] Drud, A.: CONOPT. http://www.gams.com/dd/docs/solvers/conopt.pdf (2012). Version 3
[23] Floudas, C.A.; Gounaris, C.E., A review of recent advances in global optimization, J. Glob. Optim., 45, 3-38, (2009) · Zbl 1180.90245
[24] Floudas, C.A.; Akrotirianakis, I.G.; Caratzoulas, S.; Meyer, C.A.; Kallrath, J., Global optimization in the 21st century: advances and challenges, Comput. Chem. Eng., 29, 1185-1202, (2005)
[25] Misener, R.; Floudas, C.A., Global optimization of mixed-integer models with quadratic and signomial functions: a review, Appl. Comput. Math., 11, 317-336, (2012) · Zbl 1292.90239
[26] Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995) · Zbl 0886.90106
[27] Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Applications. Nonconvex Optimization and Its Applications. Kluwer Academic, Dordrecht (2000)
[28] Horst, R., Hoang, T.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996) · Zbl 0867.90105
[29] Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming. International Series of Numerical Mathematics. Birkhäuser, Basel (2005) · Zbl 1089.90039
[30] Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Nonconvex Optimization and Its Applications. Kluwer Academic, Dordrecht (1999) · Zbl 0926.90078
[31] Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Applications, Software, and Applications. Nonconvex Optimization and Its Applications. Kluwer Academic, Norwell (2002) · Zbl 1031.90022
[32] Bussieck, M.R.; Vigerske, S.; Cochran, J.J. (ed.); Cox, L.A. (ed.); Keskinocak, P. (ed.); Kharoufeh, J.P. (ed.); Smith, J.C. (ed.), MINLP solver software, (2010), New York
[33] Adjiman, C.S.; Dallwig, S.; Floudas, C.A.; Neumaier, A., A global optimization method, \(α\)BB, for general twice differentiable NLPs-I. theoretical advances, Comput. Chem. Eng., 22, 1137-1158, (1998)
[34] Adjiman, C.S.; Androulakis, I.P.; Floudas, C.A., A global optimization method, \(α\)BB, for general twice differentiable NLPs-II. implementation and computational results, Comput. Chem. Eng., 22, 1159-1179, (1998)
[35] Androulakis, I.P.; Maranas, C.D.; Floudas, C.A., \(α\)BB: a global optimization method for general constrained nonconvex problems, J. Glob. Optim., 7, 337-363, (1995) · Zbl 0846.90087
[36] Maranas, C.D.; Floudas, C.A., Finding all solutions of nonlinearly constrained systems of equations, J. Glob. Optim., 7, 143-182, (1995) · Zbl 0841.90115
[37] Tawarmalani, M.; Sahinidis, N.V., Global optimization of mixed-integer nonlinear programs: a theoretical and computational study, Math. Program., 99, 563-591, (2004) · Zbl 1062.90041
[38] Tawarmalani, M.; Sahinidis, N.V., A polyhedral branch-and-cut approach to global optimization, Math. Program., 103, 225-249, (2005) · Zbl 1099.90047
[39] Belotti, P.; Lee, J.; Liberti, L.; Margot, F.; Wächter, A., Branching and bounds tightening techniques for non-convex MINLP, Optim. Methods Softw., 24, 597-634, (2009) · Zbl 1179.90237
[40] Lougee-Heimer, R., The common optimization interface for operations res.: promoting open-source software in the operations research community, IBM J. Res. Dev., 47, 57-66, (2003)
[41] Gau, C.Y.; Schrage, L.E.; Floudas, C.A. (ed.); Pardalos, P.M. (ed.), Implementation and testing of a branch-and-bound based method for deterministic global optimization: operations research applications, 145-164, (2003), Dordrecht
[42] Lin, Y.; Schrage, L., The global solver in the LINDO API, Optim. Methods Softw., 24, 657-668, (2009) · Zbl 1177.90325
[43] Achterberg, T., SCIP: solving constraint integer programs, Math. Program. Comput., 1, 1-41, (2009) · Zbl 1171.90476
[44] Achterberg, T.; Berthold, T.; Koch, T.; Wolter, K., Constraint integer programming: a new approach to integrate CP and MIP, (2008) · Zbl 1142.68504
[45] Berthold, T.; Heinz, S.; Vigerske, S.; Lee, J. (ed.); Leyffer, S. (ed.), Extending a CIP framework to solve miqcps, No. 154, 427-444, (2012), New York · Zbl 1242.90120
[46] Berthold, T.; Gleixner, A.M.; Heinz, S.; Vigerske, S., Analyzing the computational impact of MIQCP solver components, Numer. Algebra Contr. Optim., 2, 739-748, (2012) · Zbl 1269.90066
[47] Vigerske, S.: Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programming. PhD in Mathematics, Humboldt-University, Berlin (2012) · Zbl 1035.90064
[48] Lundell, A.; Westerlund, T., Convex underestimation strategies for signomial functions, Optim. Methods Softw., 24, 505-522, (2009) · Zbl 1178.90278
[49] Lundell, A.; Westerlund, T.; Lee, J. (ed.); Leyffer, S. (ed.), Global optimization of mixed-integer signomial programming problems, No. 154, 349-369, (2012), New York · Zbl 1242.90137
[50] Lundell, A.; Westerlund, J.; Westerlund, T., Some transformation techniques with applications in global optimization, J. Glob. Optim., 43, 391-405, (2009) · Zbl 1169.90453
[51] Lundell, A.; Skjäl, A.; Westerlund, T., A reformulation framework for global optimization, J. Glob. Optim., (2012) · Zbl 1284.76160
[52] McCormick, G.P., Computability of global solutions to factorable nonconvex programs: part 1—convex underestimating problems, Math. Program., 10, 147-175, (1976) · Zbl 0349.90100
[53] Smith, E.M.B.; Pantelides, C.C., A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex minlps, Comput. Chem. Eng., 23, 457-478, (1999)
[54] Tawarmalani, M.; Sahinidis, N.V., Semidefinite relaxations of fractional programs via novel convexification techniques, J. Glob. Optim., 20, 133-154, (2001) · Zbl 1001.90064
[55] Meyer, C.A.; Floudas, C.A.; Floudas, C.A. (ed.); Pardalos, P.M. (ed.), Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes, 327-352, (2003), Dordrecht · Zbl 1176.90469
[56] Meyer, C.A.; Floudas, C.A., Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes, J. Glob. Optim., 29, 125-155, (2004) · Zbl 1085.90047
[57] Cafieri, S.; Lee, J.; Liberti, L., On convex relaxations of quadrilinear terms, J. Glob. Optim., 47, 661-685, (2010) · Zbl 1202.90236
[58] Liberti, L.; Pantelides, C.C., Convex envelopes of monomials of odd degree, J. Glob. Optim., 25, 157-168, (2003) · Zbl 1030.90117
[59] Meyer, C.A.; Floudas, C.A., Convex envelopes for edge-concave functions, Math. Program., 103, 207-224, (2005) · Zbl 1099.90045
[60] Tardella, F., On a class of functions attaining their maximum at the vertices of a polyhedron, Discrete Appl. Math., 22, 191-195, (1988/89) · Zbl 0663.90068
[61] Tardella, F.; Floudas, C.A. (ed.); Pardalos, P.M. (ed.), On the existence of polyhedral convex envelopes, 563-573, (2003), Dordrecht · Zbl 1176.90473
[62] Tardella, F., Existence and sum decomposition of vertex polyhedral convex envelopes, Optim. Lett., 2, 363-375, (2008) · Zbl 1152.90614
[63] Tawarmalani, M.; Richard, J.P.P.; Xiong, C., Explicit convex and concave envelopes through polyhedral subdivisions, Math. Program., 138, 531-577, (2013) · Zbl 1273.90165
[64] Gounaris, C.E.; Floudas, C.A., Convexity of products of univariate functions and convexification transformations for geometric programming, J. Optim. Theory Appl., 138, 407-427, (2008) · Zbl 1163.90017
[65] Khajavirad, A.; Sahinidis, N.V., Convex envelopes generated from finitely many compact convex sets, Math. Program., 137, 371-408, (2013) · Zbl 1284.90055
[66] Khajavirad, A.; Sahinidis, N.V., Convex envelopes of products of convex and component-wise concave functions, J. Glob. Optim., 52, 391-409, (2012) · Zbl 1268.90052
[67] Shikhman, V.; Stein, O., On jet-convex functions and their tensor products, Optimization, 61, 717-731, (2012) · Zbl 1248.26017
[68] Bompadre, A.; Mitsos, A., Convergence rate of mccormick relaxations, J. Glob. Optim., 52, 1-28, (2011) · Zbl 1257.90077
[69] Gatzke, E.P.; Tolsma, J.E.; Barton, P.I., Construction of convex relaxations using automated code generation techniques, Optim. Eng., 3, 305-326, (2002) · Zbl 1035.90063
[70] Tawarmalani, M.; Ahmed, S.; Sahinidis, N.V., Product disaggregation in global optimization and relaxations of rational programs, Optim. Eng., 3, 281-303, (2002) · Zbl 1035.90064
[71] Audet, C.; Hansen, P.; Jaumard, B.; Savard, G., A branch-and-cut algorithm for nonconvex quadratically constrained quadratic programming, Math. Program., 87, 131-152, (2000) · Zbl 0966.90057
[72] Liberti, L.; Pantelides, C.C., An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms, J. Glob. Optim., 36, 161-189, (2006) · Zbl 1131.90045
[73] Sherali, H.; Dalkiran, E.; Liberti, L., Reduced RLT representations for nonconvex polynomial programming problems, J. Glob. Optim., 52, 447-469, (2012) · Zbl 1244.90185
[74] Sherali, H.D.; Alameddine, A., A new reformulation-linearization technique for bilinear programming problems, J. Glob. Optim., 2, 379-410, (1992) · Zbl 0791.90056
[75] Sherali, H.D.; Tuncbilek, C.H., A reformulation-convexification approach for solving nonconvex quadratic-programming problems, J. Glob. Optim., 7, 1-31, (1995) · Zbl 0844.90064
[76] Sherali, H.D.; Tuncbilek, C.H., New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems, Oper. Res. Lett., 21, 1-9, (1997) · Zbl 0885.90105
[77] Mitsos, A.; Chachuat, B.; Barton, P.I., Mccormick-based relaxations of algorithms, SIAM J. Optim., 20, 573-601, (2009) · Zbl 1192.65083
[78] Goldstein, A.A.; Price, J.F., On descent from local minima, Math. Comput., 25, 569-574, (1971) · Zbl 0223.65020
[79] Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic, Dordrecht (1999) · Zbl 0943.90001
[80] Guillén-Gosálbez, G., Pozo, C.: In: Optimization of Metabolic Networks in Biotechnology (2010). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=81
[81] Guillén-Gosálbez, G.; Sorribas, A., Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses, BMC Bioinform., 10, 386, (2009)
[82] Brönnimann, H.; Melquiond, G.; Pion, S., The boost interval arithmetic library, Lyon, France
[83] Brönnimann, H.; Melquiond, G.; Pion, S., The design of the boost interval arithmetic library, Theor. Comput. Sci., 351, 111-118, (2006) · Zbl 1086.65046
[84] Rikun, A.D., A convex envelope formula for multilinear functions, J. Glob. Optim., 10, 425-437, (1997) · Zbl 0881.90099
[85] Belotti, P.; Cafieri, S.; Lee, J.; Liberti, L.; Miller, A.; Chinchuluun, A. (ed.); Pardalos, P.M. (ed.); Enkhbat, R. (ed.); Pistikopoulos, E.N. (ed.), On the composition of convex envelopes for quadrilinear terms, No. 76, 1-16, (2013), New York · Zbl 1309.90062
[86] Liberti, L.; Lavor, C.; Maculan, N.; Nascimento, M., Reformulation in mathematical programming: an application to quantum chemistry, Discrete Appl. Math., 157, 1309-1318, (2009) · Zbl 1173.90494
[87] Achterberg, T.; Koch, T.; Martin, A., Branching rules revisited, Oper. Res. Lett., 33, 42-54, (2005) · Zbl 1076.90037
[88] Chang, Y.J.; Sahinidis, N.V., Global optimization in stabilizing controller design, J. Glob. Optim., 38, 509-526, (2007) · Zbl 1125.93461
[89] Chang, Y.J., Sahinidis, N.V.: Stabilizing controller design and the Belgian chocolate problem (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=57
[90] Gopalakrishnan, A., Biegler, L.: MINLP and MPCC formulations for the cascading tanks problem (2011). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=140 · Zbl 1180.90245
[91] Flores-Tlacuahuac, A., Grossmann, I.E.: Simultaneous cyclic scheduling and control of a multiproduct cstr (2009). Available from CyberInfrastructure for MINLP at. www.minlp.org/library/problem/index.php?i=71
[92] Caballero, J.A.; Grossmann, I.E., Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns, Ind. Eng. Chem. Res., 40, 2260-2274, (2001)
[93] Caballero, J.A.; Grossmann, I.E., Design of distillation sequences: from conventional to fully thermally coupled distillation systems, Comput. Chem. Eng., 28, 2307-2329, (2004)
[94] Caballero, J.A.; Grossmann, I.E., Structural considerations and modeling in the synthesis of heat integrated thermally coupled distillation sequences, Ind. Eng. Chem. Res., 45, 8454-8474, (2006)
[95] Caballero, J.A., Grossmann, I.E.: Optimal separation sequences based on distillation: from conventional to fully thermally coupled systems (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=69
[96] Escobar, M., Grossmann, I.E.: Mixed-integer nonlinear programming models for optimal simultaneous synthesis of heat exchangers network (2010). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=93
[97] Yee, T.F.; Grossmann, I.E., Simultaneous optimization models for heat integration—II. heat exchanger network synthesis, Comput. Chem. Eng., 14, 1165-1184, (1990)
[98] Grossmann, I.E.; Sargent, R.W.H., Optimum design of multipurpose chemical plants, Ind. Eng. Chem. Process Des. Dev., 18, 343-348, (1979)
[99] Kocis, G.R.; Grossmann, I.E., Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis, Ind. Eng. Chem. Res., 27, 1407-1421, (1988)
[100] You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models for the optimal design of multi-product batch plant (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=48
[101] Castro, P.; Novais, A., Optimal periodic scheduling of multistage continuous plants with single and multiple time grid formulations, Ind. Eng. Chem. Res., 46, 3669-3683, (2007)
[102] Castro, P., Novais, A.: Periodic scheduling of continuous multiproduct plants (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=34
[103] You, F.; Grossmann, I.E., Mixed-integer nonlinear programming models and algorithms for large-scale supply chain design with stochastic inventory management, Ind. Eng. Chem. Res., 47, 7802-7817, (2008)
[104] You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models and algorithms for supply chain design with stochastic inventory management (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=30
[105] Nyberg, A., Grossmann, I.E., Westerlund, T.: The optimal design of a three-echelon supply chain with inventories under uncertainty (2012). Available from CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=157 · Zbl 0203.21902
[106] Nyberg, A.; Grossmann, I.E.; Westerlund, T., An efficient reformulation of the multiechelon stochastic inventory system with uncertain demands, AIChE J., 59, 23-28, (2013)
[107] You, F.; Grossmann, I.E., Integrated multi-echelon supply chain design with inventories under uncertainty: MINLP models, computational strategies, AIChE J., 56, 419-440, (2010)
[108] Niknam, T.; Khodaei, A.; Fallahi, F., A new decomposition approach for the thermal unit commitment problem, Appl. Energy, 86, 1667-1674, (2009)
[109] Zondervan, E., Grossmann, I.E.: A deterministic security constrained unit commitment model (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=41 · Zbl 0238.90069
[110] Bragalli, C.; D’Ambrosio, C.; Lee, J.; Lodi, A.; Toth, P., On the optimal design of water distribution networks: a practical MINLP approach, Optim. Eng., 13, 219-246, (2012) · Zbl 1293.76045
[111] D’Ambrosio, C., Bragalli, C., Lee, J., Lodi, A., Toth, P.: Optimal design of water distribution networks (2011). Available from CyberInfrastructure for MINLP at. www.minlp.org/library/problem/index.php?i=134 · Zbl 1272.90034
[112] Ahmetović, E., Grossmann, I.E.: Integrated process water networks design problem (2010). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=101
[113] Ahmetović, E.; Grossmann, I.E., Global superstructure optimization for the design of integrated process water networks, AIChE J., 57, 434-457, (2011)
[114] Karuppiah, R.; Grossmann, I.E., Global optimization for the synthesis of integrated water systems in chemical processes, Comput. Chem. Eng., 30, 650-673, (2006)
[115] Ruiz, J.P., Grossmann, I.E.: Water treatment network design (2009). Available from CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=24
[116] Meeraus, A.:. GLOBALLib. http://www.gamsworld.org/global/globallib.htm · Zbl 0841.90115
[117] Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1) (2003) · Zbl 1238.90104
[118] Fourer, R., Gay, D.M., Kernighan, B.W.: The AMPL Book. AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, Brooks/Cole, N. Scituate (2002) · Zbl 0701.90062
[119] Bonami, P.; Biegler, L.T.; Conn, A.R.; Cornuéjols, G.; Grossmann, I.E.; Laird, C.D.; Lee, J.; Lodi, A.; Margot, F.; Sawaya, N.; Wächter, A., An algorithmic framework for convex mixed integer nonlinear programs, Discrete Optim., 5, 186-204, (2008) · Zbl 1151.90028
[120] Sawaya, N.W.: Reformulations, relaxations and cutting planes for generalized disjunctive programming. Ph.D. in Chemical Engineering, Carnegie Mellon University (2006) · Zbl 0171.18002
[121] Yanjun, W.; Tao, L.; Zhian, L., A general algorithm for solving generalized geometric programming with nonpositive degree of difficulty, Comput. Optim. Appl., 44, 139-158, (2009) · Zbl 1208.90163
[122] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999) · Zbl 0934.65030
[123] Vigerske, S.: COIN-OR/GAMSLinks. https://projects.coin-or.org/GAMSlinks/ (2011) · Zbl 1049.90004
[124] Dolan, E.D.; Moré, J.J., Benchmarking optimization software with performance profiles, Math. Program., 91, 201-213, (2002) · Zbl 1049.90004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.