zbMATH — the first resource for mathematics

Adaptive thermo-fluid moving boundary computations for interfacial dynamics. (English) Zbl 1293.76100
Summary: In this study, we present adaptive moving boundary computation technique with parallel implementation on a distributed memory multi-processor system for large scale thermo-fluid and interfacial flow computations. The solver utilizes Eulerian-Lagrangian method to track moving (Lagrangian) interfaces explicitly on the stationary (Eulerian) Cartesian grid where the flow fields are computed. We address the domain decomposition strategies of Eulerian-Lagrangian method by illustrating its intricate complexity of the computation involved on two different spaces interactively and consequently, and then propose a trade-off approach aiming for parallel scalability. Spatial domain decomposition is adopted for both Eulerian and Lagrangian domain due to easy load balancing and data locality for minimum communication between processors. In addition, parallel cell-based unstructured adaptive mesh refinement (AMR) technique is implemented for the flexible local refinement and even-distributed computational workload among processors. Selected cases are presented to highlight the computational capabilities, including Faraday type interfacial waves with capillary and gravitational forcing, flows around varied geometric configurations and induced by boundary conditions and/or body forces, and thermo-fluid dynamics with phase change. With the aid of the present techniques, large scale challenging moving boundary problems can be effectively addressed.
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Sim, J., Shyy, W.: Interfacial flow computations using adaptive Eulerian-Lagrangian method for spacecraft applications. International Journal for Numerical Methods in Fluids 68, 1438–1456 (2012) · Zbl 1426.76570
[2] Kuan, C. K., Sim, J., Shyy, W.: Parallel, adaptive grid computing of multiphase flows in spacecraft fuel tanks. 50th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA-2012-2761, Nashville, Tennessee (2012)
[3] Tseng, C.-C., Wei, Y., Wang, G., et al.: Modeling of turbulent, isothermal and cryogenic cavitation under attached conditions. Acta Mechanica Sinica 26, 325–353 (2010) · Zbl 1269.76121
[4] Shyy, W., Correa, S. M., Braaten, M. E.: Computation of flow in a gas turbine combustor. Combustion Science and Technology 58, 97–117 (1988)
[5] Shyy, W., Udaykumar, H. S., Rao, M. M., et al.: Computational fluid dynamics with moving boundaries. Taylor & Francis, Philadelphia (1996) · Zbl 0887.76059
[6] Prosperetti, A., Tryggvason, G.: Computational Methods for Multiphase Flow. Cambridge University Press, New York (2007) · Zbl 1166.76003
[7] Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201–225 (1981) · Zbl 0462.76020
[8] Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002) · Zbl 1026.76001
[9] Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517 (2003) · Zbl 1123.74309
[10] Tryggvason, G., Bunner, B., Esmaeeli, A., et al.: A fronttracking method for the computations of multiphase flow. Journal of Computational Physics 169, 708–759 (2001) · Zbl 1047.76574
[11] Singh, R., Shyy, W.: Three-dimensional adaptive cartesian grid method with conservative interface restructuring and reconstruction. Journal of Computational Physics 224, 150–167 (2007) · Zbl 1248.76111
[12] Mittal, R., Dong, H., Bozkurttas, M., et al.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. Journal of Computational Physics 227, 4825–4852 (2008) · Zbl 1388.76263
[13] Uzgoren, E., Sim, J., Shyy, W.: Marker-based, 3-d adaptive cartesian grid method for multiphase flow around irregular geometries. Communications in Computational Physics 5, 1–41 (2009) · Zbl 1364.76229
[14] Wu, P.: Parallel adaptive mesh generation and decomposition. Department of Computer Science, Purdue University (1995)
[15] Espostiongaro, T., Cavazzoni, C., Erbacci, G., et al.: A parallel multiphase flow code for the 3D simulation of explosive volcanic eruptions. Parallel Computing 33, 541–560 (2007)
[16] Sussman, M.: A parallelized, adaptive algorithm for multiphase flows in general geometries. Computers & Structures 83, 435–444 (2005)
[17] Marella, S.V.: A parallelized sharp-interface fixed grid method for moving boundary problems. [Ph. D. Thesis] University of Iowa the U.S.A. (2006)
[18] Agbaglah, G., Delaux, S. E. B., Fuster, D., et al.: Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. Comptes Rendus Mecanique 339, 194–207 · Zbl 1217.76044
[19] Darmana, D., Deen, N. G., Kuipers, J. A. M.: Parallelization of an euler-lagrange model using mixed domain decomposition and a mirror domain technique: Application to dispersed gas-liquid two-phase flow. Journal of Computational Physics 220, 216–248 (2006) · Zbl 1158.76396
[20] Burstedde, C., Wilcox, L. C., Ghattas, O.: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing 33, 1103–1133 (2011) · Zbl 1230.65106
[21] Powell, K. G., Zeeuw, D. L. D., Sokolov, I. V., et al.: Parallel, AMR MHD for global space weather simulations. Space Weather The International Journal of Research and Applications. Berlin Heidelberg: Springer 41, 473–490 (2005) · Zbl 1115.76390
[22] Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics 53, 484–512 (1984) · Zbl 0536.65071
[23] Gunney, B. T. N., Wissink, A. M., Hysom, D. A.: Parallel clustering algorithms for structured amr. Journal of Parallel and Distributed Computing 66, 1419–1430 (2006) · Zbl 1178.68661
[24] MacNeice, P., Olson, K. M., Mobarry, C., et al.: Paramesh: A parallel adaptive mesh refinement community toolkit. Computer Physics Communications 126, 330–354 (2000) · Zbl 0953.65088
[25] Deiterding, R.: A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Computers Structures 87, 769–783 (2009)
[26] Jablonowski, C., Herzog, M., Penner, J. E., et al.: Block-structured adaptive grids on the sphere: Advection experiments. Menthly Weather Review 134, 3691–3713 (2006)
[27] Griffith, B. E., Hornung, R. D., McQueen, D. M., et al.: Parallel and Adaptive Simulation of Cardiac Fluid Dynamics: Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications. John Wiley and Sons. New York (2009)
[28] Zuzio, D., Estivalezes, J. L.: An efficient block parallel amr method for two phase interfacial flow simulations. Computers & Fluids 44, 339–357 (2011) · Zbl 1271.76201
[29] Kirk, B. S., Peterson, J. W., Stogner, R. H., et al.: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Engineering with Computers 22, 237–254 (2006) · Zbl 05192775
[30] Lawlor, O. S., Chakravorty, S., Wilmarth, T. L., et al.: Parfum: A parallel framework for unstructured meshes for scalable dynamic physics applications. Engineering with Computers 22, 215–235 (2006) · Zbl 05192771
[31] Uzgoren, E., Singh, R., Sim, J., et al.: Computational modeling for multiphase flows with spacecraft application. Progress in Aerospace Sciences 43, 138–192 (2007)
[32] Balay, S., Brown, J., Buschelman, K., et al.: http://www.mcs.anl.gov/petsc
[33] Falgout, R. D., Yang, U. M.: Hypre: A library of high performance preconditioners. Preconditioners, Lecture Notes in Computer Science, 632–641, (2002) · Zbl 1056.65046
[34] Shyy, W., Chen, M. H., Sun, C. S.: Pressure-based multigrid algorithm for flow at all speeds. AIAA Journal 30, 2660–2669 (1992) · Zbl 0762.76077
[35] Ye, T., Mittal, R., Udaykumar, H.S., et al.: An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics 156, 209–240 (1999) · Zbl 0957.76043
[36] Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. Journal of Computational Physics 171, 132–150 (2001) · Zbl 1057.76039
[37] Sim, J., Kuan, C. K., Shyy, W.: Simulation of spacecraft fuel tank self-pressurization using Eulerian-Lagrangian method. 49th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA-2011-1318, Orlando, FL (2011)
[38] Karypis, G., Kumar, V.: Metis: Unstructured graph partitioning and sparse matrix ordering system, version 4.0. http://www.cs.umn.edu/\(\sim\)metis
[39] Schamberger, S., Wierum, J. M.: Graph partitioning in scientific simulations: Multilevel schemes versus space-filling curves. Parallel Computing Technologies 2763, 165–179 (2003)
[40] Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995) · Zbl 0830.65120
[41] Lhner, R.: Parallel unstructured grid generation. Computer Methods in Applied Mechanics and Engineering 95, 343–357 (1992) · Zbl 0825.76680
[42] Davis, G. D. V.: Natural convection of air in a square cavity: A bench mark numerical solution. International Journal for Numerical Methods in Fluids 3, 249–264 (1983) · Zbl 0538.76075
[43] Davis, G. D. V., Jones, I. P.: Natural convection in a square cavity: A comparison exercise. International Journal for Numerical Methods in Fluids 3, 227–248 (1983) · Zbl 0538.76076
[44] Jany, P., Bejan, A.: Scaling theory of melting with natural convection in an enclosure. International Journal of Heat and Mass Transfer 31, 1221–1235 (1988)
[45] Bertrand, O., Binet, B., Combeau, H., et al.: Melting driven by natural convection a comparison exercise: First results. International Journal of Thermal Sciences 38, 5–26 (1999)
[46] Ghia, U., Ghia, K., Shin, C.: High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 48, 387–411 (1982) · Zbl 0511.76031
[47] Kan, H. C., Udaykumar, H. S., Shyy, W., et al.: Hydrodynamics of a compound drop with application to leukocyte modeling. Physics of Fluids 10, 760–774 (1998)
[48] Francois, M., Shyy, W.: Computations of drop dynamics with the immersed boundary method, part 2: Drop impact and heat transfer. Numerical Heat Transfer, Part B 44, 119–143 (2003)
[49] Francois, M., Shyy, W.: Computations of drop dynamics with the immersed boundary method, part 1: Numerical algorithm and buoyancy-induced effect. Numerical Heat Transfer, Part B 44, 101–118 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.