Voxel-level mapping of tracer kinetics in PET studies: a statistical approach emphasizing tissue life tables. (English) Zbl 1454.62375

Summary: Most radiotracers used in dynamic positron emission tomography (PET) scanning act in a linear time-invariant fashion so that the measured time-course data are a convolution between the time course of the tracer in the arterial supply and the local tissue impulse response, known as the tissue residue function. In statistical terms the residue is a life table for the transit time of injected radiotracer atoms. The residue provides a description of the tracer kinetic information measurable by a dynamic PET scan. Decomposition of the residue function allows separation of rapid vascular kinetics from slower blood-tissue exchanges and tissue retention. For voxel-level analysis, we propose that residues be modeled by mixtures of nonparametrically derived basis residues obtained by segmentation of the full data volume. Spatial and temporal aspects of diagnostics associated with voxel-level model fitting are emphasized. Illustrative examples, some involving cancer imaging studies, are presented. Data from cerebral PET scanning with \(^{18}\mathrm{F}\) fluoro-deoxyglucose (FDG) and \(^{15}\mathrm{O}\) water (H2O) in normal subjects is used to evaluate the approach. Cross-validation is used to make regional comparisons between residues estimated using adaptive mixture models with more conventional compartmental modeling techniques. Simulations studies are used to theoretically examine mean square error performance and to explore the benefit of voxel-level analysis when the primary interest is a statistical summary of regional kinetics. The work highlights the contribution that multivariate analysis tools and life-table concepts can make in the recovery of local metabolic information from dynamic PET studies, particularly ones in which the assumptions of compartmental-like models, with residues that are sums of exponentials, might not be certain.


62P10 Applications of statistics to biology and medical sciences; meta analysis
92C55 Biomedical imaging and signal processing


Full Text: DOI arXiv


[1] Aboagye, E. O. (2010). The future of imaging: Developing the tools for monitoring response to therapy in oncology: The 2009 Sir James MacKenzie Davidson memorial lecture. Br. J. Radiol. 83 814-822.
[2] Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Control AC-19 716-723. · Zbl 0314.62039
[3] Bassingthwaighte, J. B. (1970). Blood flow and diffusion through mammalian organs. Science 167 1347-1353.
[4] Bassingthwaighte, J. B. (2000). Strategies for the physiome project. Ann. Biomed. Eng. 28 1043-1058.
[5] Carson, R. E., Yan, Y., Daube-Witherspoon, M. E., Freedman, N., Bacharach, S. L. and Herscovitch, P. (1993). An approximation formula for PET region-of-interest values. IEEE Trans. Med. Imag. 12 240-251.
[6] Cox, D. R. and Oakes, D. (2001). Analysis of Survival Data . Chapman & Hall, London. · Zbl 1073.62560
[7] Cunningham, V. J. and Jones, T. (1993). Spectral analysis of dynamic PET studies. J. Cereb. Blood Flow Metab. 13 15-23.
[8] Dunnwald, L. K., Gralow, J. R., Ellis, G. K., Livingston, R. B., Linden, H. M., Specht, J. M., Doot, R. K., Lawton, T. J., Barlow, W. E., Kurland, B. F., Schubert, E. K. and Mankoff, D. A. (2008). Tumor metabolism and blood flow changes by positron emission tomography: Relation to survival in patients treated with neo-adjuvant chemotherapy for locally advanced breast cancer. J. Clin. Oncol. 20 4449-4457.
[9] Graham, M. M., Muzi, M., Spence, A. M., O’Sullivan, F., Lewellen, T. K., Limk, J. M. and Krohn, K. A. (2002). The fluorodeoxyglucose lumped constant in normal human brain. J. Nucl. Med. 43 1157-1166.
[10] Gunn, R. N., Gunn, S. R., Turkheimer, F. E., Aston, J. A. D. and Cunningham, V. J. (2002). Positron emission tomography compartmental models: A basis pursuit strategy for kinetic modeling. J. Cereb. Blood Flow Metab. 22 1425-1439.
[11] Hawe, D., Hernández Fernández, F., O’Suilleabháin, L., Huang, J., Wolsztynski, E. and O’Sullivan, F. (2012). Kinetic analysis of dynamic positron emission tomography data using open-source image processing and statistical inference tools. WIREs Comput. Stat. 4 316-322.
[12] Huang, J. and O’Sullivan, F. (2014). An analysis of whole body tracer kinetics in dynamic PET studies with application to image-based blood input function extraction. In IEEE Transactions on Medical Imaging . .
[13] Huang, S. C. and Phelps, M. E. (1986). Principles of tracer kinetic modeling in positron emission tomography and autoradiography. In Positron Emission Tomography and Autoradiography (M. E. Phelps, J. C. Mazziotta and H. R. Schelbert, eds.) 287-346. Raven, New York.
[14] Huang, J., Wolsztynski, E., Muzi, M., Roychoudhury, K., Kim, K. and O’Sullivan, F. (2013). A cautionary note on the use of constrained reconstructions for quantification of regional PET imaging data. In IEEE Conference Record NSS-MIC . Seoul, South Korea.
[15] Huesman, R. H. (1984). A new fast algorithm for the evaluation of regions of interest and statistical uncertainty in computed tomography. Phys. Med. Biol. 29 543-552.
[16] Jain, R. K. (2005). Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 307 58-62.
[17] Kaasinen, V., Maguire, R. P., Hundemer, H. P. and Leenders, K. L. (2005). Corticostriatal covariance patterns of 6-[(18)F]fluoro-L-dopa and [(18)F]fluorodeoxyglucose PET in Parkinson’s disease. J. Neurol. 253 340-348.
[18] Krohn, K. A., O’Sullivan, F., Crowley, J., Eary, J. F., Linden, H. M., Link, J. M., Mankoff, D. A., Muzi, M., Rajendran, J. G., Spence, A. M. and Swanson, K. R. (2007). Challenges in clinical studies with multiple imaging probes. Nucl. Med. Biol. 34 879-885.
[19] Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data , 2nd ed. Wiley, Hoboken, NJ. · Zbl 1015.62093
[20] Layfield, D. and Venegas, J. G. (2005). Enhanced parameter estimation from noisy PET data: Part I-Methodology. Acad. Radiol. 12 1440-1447.
[21] Lee, J. S., Lee, D. S., Ahn, J. Y., Cheon, G. J., Kim, S. K., Yeo, J. S., Park, K. S., Chung, J. K. and Lee, M. C. (2005). Parametric image of myocardial blood flow generated from dynamic H2(15)O PET using factor analysis and cluster analysis. Med. Biol. Eng. Comput. 43 678-685.
[22] Li, Z., Yipintsoi, T. and Bassingthwaighte, J. B. (1997). Modeling blood flow heterogeneity. Annals of Biomedical Engineering 25 604-619.
[23] Maitra, R. and O’Sullivan, F. (1998). Variability assessment in positron emission tomography and related generalized deconvolution models. J. Amer. Statist. Assoc. 93 1340-1355. · Zbl 1064.92514
[24] Mankoff, D. A., O’Sullivan, F., Barlow, W. E. and Krohn, K. A. (2007). Molecular imaging research in the outcomes era: Measuring outcomes for individualized cancer therapy. Acad. Radiol. 14 398-405.
[25] McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models . Chapman & Hall, London. · Zbl 0588.62104
[26] Meier, P. and Zierler, K. L. (1954). On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6 731-744.
[27] Murase, K. (2003). Spectral analysis: Principle and clinical applications. Ann. Nucl. Med. 17 427-434.
[28] Muzi, M., Mankoff, D. A., Link, J. M., Shoner, S., Collier, A. C., Sasongko, L. and Unadkat, J. D. (2009). Imaging of cyclosporine inhibition of P-glycoprotein activity using 11C-verapamil in the brain: Studies of healthy humans. J. Nucl. Med. 50 1267-1275.
[29] Muzi, M., O’Sullivan, F., Mankoff, D. A., Doot, R. K., Pierce, L. A., Kurland, B. F., Linden, H. M. and Kinahan, P. E. (2012). Quantitative assessment of dynamic PET imaging data in cancer imaging. Magn. Reson. Imaging . 30 1203-1215.
[30] Natterer, F. and Wübbeling, F. (2001). Mathematical Methods in Image Reconstruction . SIAM, Philadelphia, PA. · Zbl 0974.92016
[31] O’Sullivan, F. (1993). Imaging radiotracer model parameters in PET: A mixture analysis approach. IEEE Trans. Med. Imaging 12 399-412.
[32] O’Sullivan, F. (2006). Locally constrained mixture representation of dynamic imaging data from PET and MR studies. Biostatistics 7 318-338. · Zbl 1169.62383
[33] O’Sullivan, F. and Yudi, P. (1996). Bandwidth selection for indirect density estimation based on corrupted histogram data. J. Amer. Statist. Assoc. 91 610-626. · Zbl 0869.62027
[34] O’Sullivan, F., Muzi, M., Spence, A. M., Mankoff, D. M., O’Sullivan, J. N., Fitzgerald, N., Newman, G. C. and Krohn, K. A. (2009). Nonparametric residue analysis of dynamic PET data with application to cerebral FDG studies in normals. J. Amer. Statist. Assoc. 104 556-571. · Zbl 1388.62331
[35] Ostergaard, L., Chesler, D. A., Weisskoff, R. M., Sorensen, A. G. and Rosen, B. R. (1999). Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. Magn. Reson. Med. 19 690-699.
[36] Patlak, C. S., Blasberg, R. G. and Fenstermacher, J. D. (1983). Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3 1-7.
[37] Phelps, M. E. (2000). Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA 97 9226-9233.
[38] Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L. and Kuhl, D. E. (1979). Tomographic measurement of local cerebral glucose metabolic rate in humans with [F-18]2-Fluoro-2-deoxy-D-glucose: Validation of method. Ann. Neurol. 6 371-388.
[39] Provenzale, J. M., Shah, K., Patel, U. and McCrory, D. C. (2008). Systematic review of CT and MR perfusion imaging for assessment of acute cerebrovascular disease. Am. J. Neuroradiol. 29 1476-1482.
[40] Schmid, V. J., Whitcher, B., Padhani, A. R. and Yang, G.-Z. (2009). A semi-parametric technique for the quantitative analysis of dynamic contrast-enhanced MR images based on Bayesian P-splines. IEEE Transactions in Medical Imaging 28 789-798.
[41] Spence, A. M., Muzi, M., Link, J. M., O’Sullivan, F., Eary, J. F., Hoffman, J. M., Shankar, L. K. and Krohn, K. A. (2009). NCI-sponsored trial for the evaluation of safety and preliminary efficacy of 3’-deoxy-3’-[18F]fluorothymidine (FLT) as a marker of proliferation in patients with recurrent gliomas: Preliminary efficacy studies. Mol. Imaging Biol. 11 343-355.
[42] Tseng, J., Dunnwald, L. K., Schubert, E. K., Link, J. M., Minoshima, S., Muzi, M. and Mankoff, D. A. (2004). 18F-FDG kinetics in locally advanced breast cancer: Correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J. Nucl. Med. 45 1829-1837.
[43] Veronese, M., Rizzo, G., Turkheimer, F. E. and Bertoldo, A. (2013). SAKE: A new quantification tool for positron emission tomography studies. Comput. Methods Programs Biomed. 111 199-213.
[44] Weisberg, S. (1985). Applied Linear Regression . Wiley, Hoboken, NJ. · Zbl 0646.62058
[45] Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1 80-83.
[46] Yu, E. Y., Muzi, M., Hackenbracht, J. A., Rezvani, B. B., Link, J. M., Montgomery, R. B., Higano, C. S., Eary, J. F. and Mankoff, D. A. (2011). C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: Relative findings and response to therapy. Clinical Nuclear Medicine 36 192-198.
[47] Zeng, G. L., Kadrmas, D. J. and Gullberg, G. T. (2012). Fourier domain closed-form formulas for estimation of kinetic parameters in reversible multi-compartment models. Biomed. Eng. Online 11 70.
[48] Zhou, Y., Huang, S.-C., Bergsneider, M. and Wong, D. F. (2002). Improved parametric image generation using spatial-temporal analysis of dynamic PET studies. Neuroimage 15 697-707.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.