×

zbMATH — the first resource for mathematics

Semiconductor device design using the BiMADS algorithm. (English) Zbl 1302.78018
Summary: Designing high-performance semiconductor devices is a complex optimization problem, which is characterized by multiple and, often, conflicting objectives. In this research work, we introduce a multi-objective optimization design approach based on the Bi-Objective Mesh Adaptive Direct Search (BiMADS) algorithm. First, we assess the performance of the algorithm on the design of a \(n^+-n-n^+\) silicon diode using a standard drift-diffusion model, showing that BiMADS is able to find the best solutions and to outperform the state-of-the-art algorithms. Successively, we tackle the design of MESFET and MOSFET devices, using a Maximum Entropy Principle (MEP) model; BiMADS is able to locate new designs that minimize the size of the device and provide an increased output current. Moreover, it is proved that BiMADS is able to locate promising solutions with a tight budget of objective function evaluations, which makes it suitable for large-scale industrial applications.

MSC:
78A48 Composite media; random media in optics and electromagnetic theory
78A35 Motion of charged particles
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdallah, N. B.; Degond, P., On a hierarchy of macroscopic models for semiconductors, Journal of Mathematical Physics, 37, 3306, (1996) · Zbl 0868.45006
[2] M.A. Abramson, C. Audet, G. Couture, J.E. Dennis Jr., S. Le Digabel, C. Tribes, The nomad project, <http://www.gerad.ca/nomad>.
[3] Abramson, Mark A.; Audet, Charles; Dennis, J. E.; Le Digabel, Sébastien, Orthomads: a deterministic mads instance with orthogonal directions, SIAM Journal on Optimization, 20, 948-966, (2009) · Zbl 1189.90202
[4] Anile, A. M.; Marrocco, A.; Sellier, J. M.; Romano, V., 2D numerical simulation of the MEP energy-transport model with a mixed finite elements scheme, Journal of Computational Electronics, 4, 231, (2005)
[5] Anile, A. M.; Romano, V., Non parabolic band transport in semiconductors: closure of the moment equations, Continuum Mechanics and Thermodynamics, 11, 307, (1999) · Zbl 1080.82584
[6] Anile, A. M.; Mascali, G.; Romano, V., Recent developments in hydrodynamical modeling of semiconductors, (Mathematical Problems in Semiconductor Physics, Lecture Notes in Mathematics, vol. 1832, (2003), Springer), 1-54 · Zbl 1036.82027
[7] Audet, C.; Dennis, J. E., Mesh adaptive direct search algorithms for constrained optimization, SIAM Journal on Optimization, 17, 188-217, (2006) · Zbl 1112.90078
[8] Audet, C.; Savard, G.; Zghal, W., Multiobjective optimization through a series of single-objective formulations, SIAM Journal on Optimization, 19, 188-210, (2008) · Zbl 1167.90020
[9] Audet, C.; Savard, G.; Zghal, W., A mesh adaptive direct search algorithm for multiobjective optimization, European Journal of Operational Research, 204, 545-556, (2010) · Zbl 1181.90137
[10] Burger, M.; Hinze, M.; Pinnau, R., Optimization models for semiconductor dopant profiling, (Transport Phenomena and Kinetic Theory (MSSETS), (2007), Birkhäuser), 91-115 · Zbl 1115.82038
[11] Burger, M.; Pinnau, R., Fast optimal design of semiconductor devices, SIAM Journal on Applied Mathematics, 108-126, (2003) · Zbl 1056.49035
[12] Chen, X.; Chen, L.; Jian, H., The Dirichlet problem of the quantum drift – diffusion model, Nonlinear Analysis, 69, 3084-3092, (2008) · Zbl 1158.35372
[13] Chen, Z.; Cockburn, B.; Jerome, J.; Shu, C.-W., Finite element computation of the hydrodynamic model of semiconductor devices, VLSI Design, 3, 145-158, (1995)
[14] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6, 182-197, (2002)
[15] Degond, P.; Génieys, S.; Jüngel, A., A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects, Journal de Mathematiques Pures et Appliques, 76, 991-1015, (1997) · Zbl 0907.35059
[16] Degond, P.; Génieys, S.; Jüngel, A., A steady-state model in nonequilibrium thermodynamics including thermal and electrical effects, Mathematical Methods in the Applied Sciences, 21, 1399-1413, (1998) · Zbl 0935.35046
[17] Degond, P.; Jüngel, A., High-field approximations of the energy-transport model for semiconductors with non-parabolic band structure, Zeitschrift fur Angewandte Mathematik und Physik, 52, 1053-1070, (2001) · Zbl 0991.35043
[18] Knowles, J. D.; Corne, D. W., Approximating the nondominated front using the Pareto archived evolution strategy, Evolutionary computation, 8, 149-172, (2000)
[19] Le Digabel, S., Algorithm 909: nomad: nonlinear optimization with the mads algorithm, ACM Transactions on Mathematical Software (TOMS), 37, 44, (2011) · Zbl 1365.65172
[20] Markowich, P. A., The stationary semiconductor device equations, (1986), Springer
[21] Pareto, Vilfredo, Cours d’economie politique, (1896), Droz Genève
[22] Romano, V., Non parabolic band transport in semiconductors: closure of the production terms in the moment equations, Continuum Mechanics and Thermodynamics, 12, 31, (2000) · Zbl 0962.82085
[23] Romano, V., Non-parabolic band hydrodynamical model for silicon semiconductors and simulation of electron devices, Math. Meth. Appl. Sci., 24, 439, (2001) · Zbl 0981.35040
[24] Romano, V., 2D simulation of a silicon mesfet with a nonparabolic hydrodynamical model based on the maximum entropy principle, Journal of Computational Physics, 176, 70, (2002) · Zbl 0995.82525
[25] Romano, V., 2D numerical simulation of the MEP energy-transport model with a finite difference scheme, Journal of Computational Physics, 221, 439-468, (2007) · Zbl 1216.82035
[26] Scharfetter, D. L.; Gummel, H. K., Large-signal analysis of a silicon Read diode oscillator, IEEE Transactions on Electron Devices, 16, 64-77, (1969)
[27] Zitzler, E.; Brockhoff, D.; Thiele, L., The hypervolume indicator revisited: on the design of Pareto-compliant indicators via weighted integration, Lecture Notes in Computer Science, 4403, 862, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.