×

zbMATH — the first resource for mathematics

Photon radiation with MadDipole. (English) Zbl 1294.81339
Summary: We present the automation of a subtraction method for photon radiation using the dipole formalism within the MadGraph framework. The subtraction terms are implemented both in dimensional regularization and mass regularization for massless and massive cases and non-collinear-safe observables are accounted for.
MSC:
81V22 Unified quantum theories
81V10 Electromagnetic interaction; quantum electrodynamics
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] SM and NLO Multileg Working Group collaboration, J.R. Andersen et al., The SM and NLO multileg working group: Summary report, arXiv:1003.1241 [SPIRES].
[2] Binoth, T.; etal., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun., 181, 1612, (2010)
[3] Dittmaier, S.; Kabelschacht, A.; Kasprzik, T., Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys., B 800, 146, (2008)
[4] Höeche, S.; Schumann, S.; Siegert, F., Hard photon production and matrix-element parton-shower merging, Phys. Rev., D 81, 034026, (2010)
[5] Dittmaier, S.; Krämer, M., Electroweak radiative corrections to W-boson production at hadron colliders, Phys. Rev., D 65, 073007, (2002)
[6] Carloni Calame, CM; Montagna, G.; Nicrosini, O.; Vicini, A., Precision electroweak calculation of the charged current Drell-Yan process, JHEP, 12, 016, (2006)
[7] Accomando, E.; Denner, A.; Meier, C., Electroweak corrections to Wγ and Zγ production at the LHC, Eur. Phys. J., C 47, 125, (2006)
[8] Ciccolini, M.; Denner, A.; Dittmaier, S., Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev., D 77, 013002, (2008)
[9] Actis, S.; Passarino, G.; Sturm, C.; Uccirati, S., NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett., B 670, 12, (2008)
[10] Bredenstein, A.; Denner, A.; Dittmaier, S.; Weber, MM, Radiative corrections to the semileptonic and hadronic Higgs-boson decays H → WW/ZZ → 4 fermions, JHEP, 02, 080, (2007)
[11] Ciccolini, ML; Dittmaier, S.; Kramer, M., Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev., D 68, 073003, (2003)
[12] Degrassi, G.; Maltoni, F., Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett., B 600, 255, (2004)
[13] Degrassi, G.; Maltoni, F., Two-loop electroweak corrections to the Higgs-boson decay H → γγ, Nucl. Phys., B 724, 183, (2005)
[14] Kühn, JH; Scharf, A.; Uwer, P., Electroweak effects in top-quark pair production at hadron colliders, Eur. Phys. J., C 51, 37, (2007)
[15] Bernreuther, W.; Fücker, M.; Si, Z-G, Weak interaction corrections to hadronic top quark pair production: contributions from quark-gluon and \( b\bar{b} \) induced reactions, Phys. Rev., D 78, 017503, (2008)
[16] Beccaria, M.; Macorini, G.; Renard, FM; Verzegnassi, C., Associated tw production at LHC: A complete calculation of electroweak supersymmetric effects at one loop, Phys. Rev., D 73, 093001, (2006)
[17] Hollik, W.; Kollar, M.; Trenkel, MK, Hadronic production of top-squark pairs with electroweak NLO contributions, JHEP, 02, 018, (2008)
[18] Hollik, W.; Mirabella, E.; Trenkel, MK, Electroweak contributions to squark-gluino production at the LHC, JHEP, 02, 002, (2009)
[19] Germer, J.; Hollik, W.; Mirabella, E.; Trenkel, MK, Hadronic production of squark-squark pairs: the electroweak contributions, JHEP, 08, 023, (2010)
[20] Glover, EWN; Morgan, AG, Measuring the photon fragmentation function at LEP, Z. Phys., C 62, 311, (1994)
[21] Denner, A.; Dittmaier, S.; Kasprzik, T.; Mück, A., Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP, 08, 075, (2009)
[22] Frixione, S.; Kunszt, Z.; Signer, A., Three jet cross-sections to next-to-leading order, Nucl. Phys., B 467, 399, (1996)
[23] Somogyi, G., Subtraction with hadronic initial states: an NNLO-compatible scheme, JHEP, 05, 016, (2009)
[24] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[25] Catani, S.; Dittmaier, S.; Seymour, MH; Trócsányi, Z., The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys., B 627, 189, (2002)
[26] Kosower, DA, Antenna factorization of gauge-theory amplitudes, Phys. Rev., D 57, 5410, (1998)
[27] Campbell, JM; Cullen, MA; Glover, EWN, Four jet event shapes in electron positron annihilation, Eur. Phys. J., C 9, 245, (1999)
[28] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Antenna subtraction at NNLO, JHEP, 09, 056, (2005)
[29] Daleo, A.; Gehrmann, T.; Maître, D., Antenna subtraction with hadronic initial states, JHEP, 04, 016, (2007)
[30] Dittmaier, S., A general approach to photon radiation off fermions, Nucl. Phys., B 565, 69, (2000)
[31] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[32] Ossola, G.; Papadopoulos, CG; Pittau, R., On the rational terms of the one-loop amplitudes, JHEP, 05, 004, (2008)
[33] Berger, CF; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[34] Giele, WT; Zanderighi, G., On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP, 06, 038, (2008)
[35] Binoth, T.; Guillet, JP; Heinrich, G.; Pilon, E.; Reiter, T., Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun., 180, 2317, (2009)
[36] Mastrolia, P.; Ossola, G.; Reiter, T.; Tramontano, F., Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP, 08, 080, (2010)
[37] Denner, A.; Dittmaier, S., Reduction schemes for one-loop tensor integrals, Nucl. Phys., B 734, 62, (2006)
[38] Stelzer, T.; Long, WF, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun., 81, 357, (1994)
[39] Maltoni, F.; Stelzer, T., Madevent: automatic event generation with madgraph, JHEP, 02, 027, (2003)
[40] Alwall, J.; etal., Madgraph/madevent v4: the new web generation, JHEP, 09, 028, (2007)
[41] Mangano, ML; Moretti, M.; Piccinini, F.; Pittau, R.; Polosa, AD, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP, 07, 001, (2003)
[42] CompHEP collaboration; Boos, E.; etal., Comphep 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth., A 534, 250, (2004)
[43] A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
[44] Gleisberg, T.; etal., SHERPA 1.α, a proof-of-concept version, JHEP, 02, 056, (2004)
[45] Gleisberg, T.; etal., Event generation with SHERPA 1.1, JHEP, 02, 007, (2009)
[46] Cafarella, A.; Papadopoulos, CG; Worek, M., Helac-phegas: a generator for all parton level processes, Comput. Phys. Commun., 180, 1941, (2009)
[47] W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
[48] Gleisberg, T.; Krauss, F., Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J., C 53, 501, (2008)
[49] M.H. Seymour and C. Tevlin, TeVJet: A general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
[50] Czakon, M.; Papadopoulos, CG; Worek, M., Polarizing the dipoles, JHEP, 08, 085, (2009)
[51] Hasegawa, K.; Moch, S.; Uwer, P., Autodipole: automated generation of dipole subtraction terms, Comput. Phys. Commun., 181, 1802, (2010)
[52] K. Hasegawa, Super AutoDipole, arXiv:1007.1585 [SPIRES].
[53] Frederix, R.; Gehrmann, T.; Greiner, N., Automation of the dipole subtraction method in madgraph/madevent, JHEP, 09, 122, (2008)
[54] Frederix, R.; Frixione, S.; Maltoni, F.; Stelzer, T., Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP, 10, 003, (2009)
[55] Frederix, R.; Gehrmann, T.; Greiner, N., Integrated dipoles with maddipole in the madgraph framework, JHEP, 06, 086, (2010)
[56] Dittmaier, S.; Huber, M., Radiative corrections to the neutral-current Drell-Yan process in the standard model and its minimal supersymmetric extension, JHEP, 01, 060, (2010)
[57] Diener, KPO; Dittmaier, S.; Hollik, W., Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering, Phys. Rev., D 72, 093002, (2005)
[58] Martin, AD; Roberts, RG; Stirling, WJ; Thorne, RS, Parton distributions incorporating QED contributions, Eur. Phys. J., C 39, 155, (2005)
[59] Koller, K.; Walsh, TF; Zerwas, PM, Testing QCD: direct photons in \(e\)\^{}{+}\(e\)\^{}{−} collisions, Z. Phys., C 2, 197, (1979)
[60] Frixione, S., Isolated photons in perturbative QCD, Phys. Lett., B 429, 369, (1998)
[61] ALEPH collaboration; Buskulic, D.; etal., First measurement of the quark to photon fragmentation function, Z. Phys., C 69, 365, (1996)
[62] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Radiative corrections to the photon + 1 jet rate at LEP, Phys. Lett., B 414, 354, (1997)
[63] Denner, A.; Dittmaier, S.; Gehrmann, T.; Kurz, C., Electroweak corrections to hadronic event shapes and jet production in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Nucl. Phys., B 836, 37, (2010)
[64] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., RACOONWW 1.3: A Monte Carlo program for four-fermion production at \(e\)\^{}{+}\(e\)\^{}{−} colliders, Comput. Phys. Commun., 153, 462, (2003)
[65] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., Predictions for all processes \(e\)\^{}{+}\(e\)\^{}{−} → fermions + γ, Nucl. Phys., B 560, 33, (1999)
[66] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., Electroweak radiative corrections to \(e\)\^{}{+}\(e\)\^{}{−} → WW → 4 fermions in double-pole approximation: the RACOONWW approach, Nucl. Phys., B 587, 67, (2000)
[67] Denner, A.; Dittmaier, S.; Roth, M.; Weber, MM, Electroweak radiative corrections to \( {e^{+} }{e^{-} } → t\bar{t}H \), Phys. Lett., B 575, 290, (2003)
[68] Denner, A.; Dittmaier, S.; Roth, M.; Weber, MM, Radiative corrections to Higgs-boson production in association with top-quark pairs at \(e\)\^{}{+}\(e\)\^{}{−} colliders, Nucl. Phys., B 680, 85, (2004)
[69] Nagy, Z.; Trócsányi, Z., Next-to-leading order calculation of four-jet observables in electron positron annihilation, Phys. Rev., D 59, 014020, (1999)
[70] Nagy, Z., Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev., D 68, 094002, (2003)
[71] Huber, T.; Maître, D., Hypexp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun., 178, 755, (2008)
[72] Huber, T.; Maître, D., Hypexp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun., 175, 122, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.