×

zbMATH — the first resource for mathematics

Numerical NLO QCD calculations. (English) Zbl 1294.81267
Summary: We present an algorithm for the numerical calculation of one-loop QCD amplitudes. The algorithm consists of subtraction terms, approximating the soft, collinear and ultraviolet divergences of one-loop amplitudes and a method to deform the integration contour for the loop integration into the complex space. The algorithm is formulated at the amplitude level and does not rely on Feynman graphs. Therefore all required ingredients can be calculated efficiently using recurrence relations. The algorithm applies to massless partons as well as to massive partons.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Kilgore, WB; Giele, WT, Next-to-leading order gluonic three jet production at hadron colliders, Phys. Rev., D 55, 7183, (1997)
[2] Nagy, Z., Three-jet cross sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett., 88, 122003, (2002)
[3] Nagy, Z., Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev., D 68, 094002, (2003)
[4] Dittmaier, S.; Uwer, P.; Weinzierl, S., NLO QCD corrections to \(t\) anti-\(t\) + jet production at hadron colliders, Phys. Rev. Lett., 98, 262002, (2007)
[5] Dittmaier, S.; Uwer, P.; Weinzierl, S., Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: phenomenological studies for the tevatron and the LHC, Eur. Phys. J., C 59, 625, (2009)
[6] Melnikov, K.; Schulze, M., NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys., B 840, 129, (2010)
[7] Beenakker, W.; etal., NLO QCD corrections to t anti-th production in hadron collisions. ((U)), Nucl. Phys., B 653, 151, (2003)
[8] Dawson, S.; Jackson, C.; Orr, LH; Reina, L.; Wackeroth, D., Associated Higgs production with top quarks at the large hadron collider: NLO QCD corrections, Phys. Rev., D 68, 034022, (2003)
[9] Lazopoulos, A.; McElmurry, T.; Melnikov, K.; Petriello, F., Next-to-leading order QCD corrections to \( t\bar{t}Z \) production at the LHC, Phys. Lett., B 666, 62, (2008)
[10] D. Peng-Fei et al., QCD corrections to associated production of\( t\bar{t}γ \)at hadron colliders, arXiv:0907.1324 [SPIRES].
[11] Harris, BW; Laenen, E.; Phaf, L.; Sullivan, Z.; Weinzierl, S., The fully differential single top quark cross-section in next to leading order QCD, Phys. Rev., D 66, 054024, (2002)
[12] Cao, Q-H; Yuan, CP, Single top quark production and decay at next-to-leading order in hadron collision, Phys. Rev., D 71, 054022, (2005)
[13] Cao, Q-H; Schwienhorst, R.; Yuan, CP, Next-to-leading order corrections to single top quark production and decay at tevatron. 1. \(s\)\^{}{−} channel process, Phys. Rev., D 71, 054023, (2005)
[14] Cao, Q-H; Schwienhorst, R.; Benitez, JA; Brock, R.; Yuan, CP, Next-to-leading order corrections to single top quark production and decay at the tevatron: 2. \(t\)\^{}{−} channel process, Phys. Rev., D 72, 094027, (2005)
[15] Campbell, JM; Frederix, R.; Maltoni, F.; Tramontano, F., Next-to-leading-order predictions for t-channel single-top production at hadron colliders, Phys. Rev. Lett., 102, 182003, (2009)
[16] Heim, S.; Cao, Q-H; Schwienhorst, R.; Yuan, CP, Next-to-leading order QCD corrections to s-channel single top quark production and decay at the LHC, Phys. Rev., D 81, 034005, (2010)
[17] Campbell, JM; Ellis, KR; Zanderighi, G., Next-to-leading order predictions for WW + 1 jet distributions at the LHC, JHEP, 12, 056, (2007)
[18] Dittmaier, S.; Kallweit, S.; Uwer, P., NLO QCD corrections to WW+jet production at hadron colliders, Phys. Rev. Lett., 100, 062003, (2008)
[19] Dittmaier, S.; Kallweit, S.; Uwer, P., NLO QCD corrections to \( {{{pp}} \left/ {{p\bar{p}}} \right.} → WW + jet + X \) including leptonic W-boson decays, Nucl. Phys., B 826, 18, (2010)
[20] Binoth, T.; Gleisberg, T.; Karg, S.; Kauer, N.; Sanguinetti, G., NLO QCD corrections to ZZ+jet production at hadron colliders, Phys. Lett., B 683, 154, (2010)
[21] T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W+W+jj production at the LHC, arXiv:1007.5313 [SPIRES].
[22] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP, 08, 108, (2008)
[23] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to \( pp → t\bar{t}\;b\bar{b} + X \) at the LHC, Phys. Rev. Lett., 103, 012002, (2009)
[24] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP, 03, 021, (2010)
[25] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Pittau, R.; Worek, M., Assault on the NLO wishlist: pp → tt bb, JHEP, 09, 109, (2009)
[26] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Worek, M., Dominant QCD backgrounds in Higgs boson analyses at the LHC: A study of \( pp → t\bar{t} + 2 \) jets at next-to-leading order, Phys. Rev. Lett., 104, 162002, (2010)
[27] Campbell, JM; Ellis, RK, Radiative corrections to \( Z\;b\bar{b} \) production, Phys. Rev., D 62, 114012, (2000)
[28] Campbell, JM; Ellis, RK, Next-to-leading order corrections to \(W\)\^{}{+} 2 jet and \(Z\)\^{}{+} 2 jet production at hadron colliders, Phys. Rev., D 65, 113007, (2002)
[29] Campbell, JM; Ellis, RK; Rainwater, DL, Next-to-leading order QCD predictions for W + 2jet and Z + 2jet production at the CERN LHC, Phys. Rev., D 68, 094021, (2003)
[30] Campbell, JM; Ellis, RK; Maltoni, F.; Willenbrock, S., Production of a Z boson and two jets with one heavy-quark tag, Phys. Rev., D 73, 054007, (2006)
[31] Campbell, JM; Ellis, RK; Maltoni, F.; Willenbrock, S., Production of a W boson and two jets with one \(b\)\^{}{−} quark tag, Phys. Rev., D 75, 054015, (2007)
[32] Duca, V.; Kilgore, W.; Oleari, C.; Schmidt, C.; Zeppenfeld, D., H + 2 jets via gluon fusion, Phys. Rev. Lett., 87, 122001, (2001)
[33] Duca, V.; Kilgore, W.; Oleari, C.; Schmidt, C.; Zeppenfeld, D., Gluon-fusion contributions to H + 2 jet production, Nucl. Phys., B 616, 367, (2001)
[34] Campbell, JM; Ellis, RK; Zanderighi, G., Next-to-leading order Higgs + 2 jet production via gluon fusion, JHEP, 10, 028, (2006)
[35] Ellis, RK; Melnikov, K.; Zanderighi, G., Generalized unitarity at work: first NLO QCD results for hadronic W + 3jet production, JHEP, 04, 077, (2009)
[36] Ellis, RK; Melnikov, K.; Zanderighi, G., W + 3 jet production at the tevatron, Phys. Rev., D 80, 094002, (2009)
[37] Berger, CF; etal., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett., 102, 222001, (2009)
[38] Berger, CF; etal., Next-to-leading order QCD predictions for W + 3 jet distributions at hadron colliders, Phys. Rev., D 80, 074036, (2009)
[39] Berger, CF; etal., Next-to-leading order QCD predictions for \(Z\), \(γ\)\^{}{∗} + 3-jet distributions at the tevatron, Phys. Rev., D 82, 074002, (2010)
[40] C.F. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, arXiv:1009.2338 [SPIRES].
[41] Lazopoulos, A.; Melnikov, K.; Petriello, F., QCD corrections to tri-boson production, Phys. Rev., D 76, 014001, (2007)
[42] Binoth, T.; Ossola, G.; Papadopoulos, CG; Pittau, R., NLO QCD corrections to tri-boson production, JHEP, 06, 082, (2008)
[43] Binoth, T.; etal., Next-to-leading order QCD corrections to \( pp → b\bar{b}b\bar{b} + X \) at the LHC: the quark induced case, Phys. Lett., B 685, 293, (2010)
[44] Jäger, B.; Oleari, C.; Zeppenfeld, D., Next-to-leading order QCD corrections to \(W\)\^{}{+}\(W\)\^{}{−} production via vector-boson fusion, JHEP, 07, 015, (2006)
[45] Jäger, B.; Oleari, C.; Zeppenfeld, D., Next-to-leading order QCD corrections to Z boson pair production via vector-boson fusion, Phys. Rev., D 73, 113006, (2006)
[46] Bozzi, G.; Jäger, B.; Oleari, C.; Zeppenfeld, D., Next-to-leading order QCD corrections to W\^{}{+}Z and W\^{}{−}Z production via vector-boson fusion, Phys. Rev., D 75, 073004, (2007)
[47] Hankele, V.; Zeppenfeld, D., QCD corrections to hadronic WWZ production with leptonic decays, Phys. Lett., B 661, 103, (2008)
[48] Campanario, F.; Hankele, V.; Oleari, C.; Prestel, S.; Zeppenfeld, D., QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev., D 78, 094012, (2008)
[49] Jäger, B.; Oleari, C.; Zeppenfeld, D., Next-to-leading order QCD corrections to W\^{}{+}W\^{}{+} jj and W\^{}{−}W\^{}{−} jj production via weak-boson fusion, Phys. Rev., D 80, 034022, (2009)
[50] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[51] Dittmaier, S., A general approach to photon radiation off fermions, Nucl. Phys., B 565, 69, (2000)
[52] Phaf, L.; Weinzierl, S., Dipole formalism with heavy fermions, JHEP, 04, 006, (2001)
[53] Catani, S.; Dittmaier, S.; Seymour, MH; Trócsányi, Z., The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys., B 627, 189, (2002)
[54] Weinzierl, S., Automated computation of spin-and colour-correlated Born matrix elements, Eur. Phys. J., C 45, 745, (2006)
[55] Gleisberg, T.; Krauss, F., Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J., C 53, 501, (2008)
[56] M.H. Seymour and C. Tevlin, TeVJet: A general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
[57] Hasegawa, K.; Moch, S.; Uwer, P., Autodipole - automated generation of dipole subtraction terms -, Comput. Phys. Commun., 181, 1802, (2010)
[58] Frederix, R.; Gehrmann, T.; Greiner, N., Automation of the dipole subtraction method in madgraph/madevent, JHEP, 09, 122, (2008)
[59] Czakon, M.; Papadopoulos, CG; Worek, M., Polarizing the dipoles, JHEP, 08, 085, (2009)
[60] Berends, FA; Giele, WT, Recursive calculations for processes with n gluons, Nucl. Phys., B 306, 759, (1988)
[61] Kosower, DA, Light cone recurrence relations for QCD amplitudes, Nucl. Phys., B 335, 23, (1990)
[62] Caravaglios, F.; Moretti, M., An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett., B 358, 332, (1995)
[63] Kanaki, A.; Papadopoulos, CG, HELAC: A package to compute electroweak helicity amplitudes, Comput. Phys. Commun., 132, 306, (2000)
[64] M. Moretti, T. Ohl and J. Reuter, O’Mega: An optimizing matrix element generator, hep-ph/0102195 [SPIRES].
[65] Dinsdale, M.; Ternick, M.; Weinzierl, S., A comparison of efficient methods for the computation of Born gluon amplitudes, JHEP, 03, 056, (2006)
[66] Duhr, C.; Hoeche, S.; Maltoni, F., Color-dressed recursive relations for multi-parton amplitudes, JHEP, 08, 062, (2006)
[67] Dittmaier, S., Separation of soft and collinear singularities from one-loop N-point integrals, Nucl. Phys., B 675, 447, (2003)
[68] Denner, A.; Dittmaier, S., Reduction of one-loop tensor 5-point integrals, Nucl. Phys., B 658, 175, (2003)
[69] Denner, A.; Dittmaier, S., Reduction schemes for one-loop tensor integrals, Nucl. Phys., B 734, 62, (2006)
[70] A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, arXiv:1005.2076 [SPIRES].
[71] Giele, WT; Glover, EWN, A calculational formalism for one-loop integrals, JHEP, 04, 029, (2004)
[72] Hameren, A.; Vollinga, J.; Weinzierl, S., Automated computation of one-loop integrals in massless theories, Eur. Phys. J., C 41, 361, (2005)
[73] Ellis, RK; Giele, WT; Zanderighi, G., Semi-numerical evaluation of one-loop corrections, Phys. Rev., D 73, 014027, (2006)
[74] Aguila, F.; Pittau, R., Recursive numerical calculus of one-loop tensor integrals, JHEP, 07, 017, (2004)
[75] R. Pittau, Formulae for a numerical computation of one-loop tensor integrals, hep-ph/0406105 [SPIRES].
[76] Binoth, T.; Heinrich, G.; Kauer, N., A numerical evaluation of the scalar hexagon integral in the physical region, Nucl. Phys., B 654, 277, (2003)
[77] Binoth, T.; Guillet, JP; Heinrich, G.; Pilon, E.; Schubert, C., An algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP, 10, 015, (2005)
[78] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys., B 435, 59, (1995)
[79] Berger, CF; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[80] Forde, D., Direct extraction of one-loop integral coefficients, Phys. Rev., D 75, 125019, (2007)
[81] Ossola, G.; Papadopoulos, CG; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys., B 763, 147, (2007)
[82] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[83] Ossola, G.; Papadopoulos, CG; Pittau, R., On the rational terms of the one-loop amplitudes, JHEP, 05, 004, (2008)
[84] Mastrolia, P.; Ossola, G.; Papadopoulos, CG; Pittau, R., Optimizing the reduction of one-loop amplitudes, JHEP, 06, 030, (2008)
[85] Draggiotis, P.; Garzelli, MV; Papadopoulos, CG; Pittau, R., Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP, 04, 072, (2009)
[86] Garzelli, MV; Malamos, I.; Pittau, R., Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP, 01, 040, (2010)
[87] W.B. Kilgore, One-loop Integral Coefficients from Generalized Unitarity, arXiv:0711.5015 [SPIRES].
[88] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., D-dimensional unitarity cut method, Phys. Lett., B 645, 213, (2007)
[89] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP, 03, 111, (2007)
[90] Ellis, RK; Giele, WT; Kunszt, Z., A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP, 03, 003, (2008)
[91] Giele, WT; Kunszt, Z.; Melnikov, K., Full one-loop amplitudes from tree amplitudes, JHEP, 04, 049, (2008)
[92] Ellis, RK; Giele, WT; Kunszt, Z.; Melnikov, K., Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys., B 822, 270, (2009)
[93] Soper, DE, QCD calculations by numerical integration, Phys. Rev. Lett., 81, 2638, (1998)
[94] Soper, DE, Techniques for QCD calculations by numerical integration, Phys. Rev., D 62, 014009, (2000)
[95] Soper, DE, Choosing integration points for QCD calculations by numerical integration, Phys. Rev., D 64, 034018, (2001)
[96] Krämer, M.; Soper, DE, Next-to-leading order numerical calculations in Coulomb gauge, Phys. Rev., D 66, 054017, (2002)
[97] Nagy, Z.; Soper, DE, General subtraction method for numerical calculation of one-loop QCD matrix elements, JHEP, 09, 055, (2003)
[98] Nagy, Z.; Soper, DE, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev., D 74, 093006, (2006)
[99] Gong, W.; Nagy, Z.; Soper, DE, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev., D 79, 033005, (2009)
[100] Passarino, G., An approach toward the numerical evaluation of multi-loop Feynman diagrams, Nucl. Phys., B 619, 257, (2001)
[101] Ferroglia, A.; Passera, M.; Passarino, G.; Uccirati, S., All-purpose numerical evaluation of one-loop multi-leg Feynman diagrams, Nucl. Phys., B 650, 162, (2003)
[102] Anastasiou, C.; Beerli, S.; Daleo, A., Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically, JHEP, 05, 071, (2007)
[103] Becher, T.; Neubert, M., Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett., 102, 162001, (2009)
[104] Gardi, E.; Magnea, L., Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP, 03, 079, (2009)
[105] Assadsolimani, M.; Becker, S.; Weinzierl, S., A simple formula for the infrared singular part of the integrand of one-loop QCD amplitudes, Phys. Rev., D 81, 094002, (2010)
[106] Assadsolimani, M.; Becker, S.; Reuschle, C.; Weinzierl, S., Infrared singularities in one-loop amplitudes, Nucl. Phys. Proc. Suppl., 205-206, 224, (2010)
[107] Cvitanovic, P.; Lauwers, PG; Scharbach, PN, Gauge invariance structure of quantum chromodynamics, Nucl. Phys., B 186, 165, (1981)
[108] Berends, FA; Giele, W., The six gluon process as an example of Weyl-Van der Waerden spinor calculus, Nucl. Phys., B 294, 700, (1987)
[109] Mangano, ML; Parke, SJ; Xu, Z., Duality and multi-gluon scattering, Nucl. Phys., B 298, 653, (1988)
[110] Kosower, D.; Lee, B-H; Nair, VP, Multi gluon scattering: A string based calculation, Phys. Lett., B 201, 85, (1988)
[111] Bern, Z.; Kosower, DA, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys., B 362, 389, (1991)
[112] Hooft, G., Planar diagram theory for strong interactions, Nucl. Phys., B 72, 461, (1974)
[113] Maltoni, F.; Paul, K.; Stelzer, T.; Willenbrock, S., Color-flow decomposition of QCD amplitudes, Phys. Rev., D 67, 014026, (2003)
[114] Bern, Z.; Dixon, LJ; Kosower, DA, One loop corrections to two quark three gluon amplitudes, Nucl. Phys., B 437, 259, (1995)
[115] Kinoshita, T., Mass singularities of Feynman amplitudes, J. Math. Phys., 3, 650, (1962)
[116] Ellis, RK; Zanderighi, G., Scalar one-loop integrals for QCD, JHEP, 02, 002, (2008)
[117] Usyukina, NI; Davydychev, AI, An approach to the evaluation of three and four point ladder diagrams, Phys. Lett., B 298, 363, (1993)
[118] H.J. Lu and C.A. Perez, Massless one loop scalar three point integral and associated Clausen, Glaisher and L functions, report SLAC-PUB-5809 [SPIRES].
[119] Bern, Z.; Dixon, LJ; Kosower, DA; Weinzierl, S., One-loop amplitudes for \( {e^{+} }{e^{-} } → \bar{q}q\bar{Q}Q \), Nucl. Phys., B 489, 3, (1997)
[120] Lepage, GP, A new algorithm for adaptive multidimensional integration, J. Comput. Phys., 27, 192, (1978)
[121] G. P. Lepage, Vegas: An Adaptive Multidimensional Integration Program, report CLNS-80/447 [SPIRES].
[122] Binoth, T.; Guillet, JP; Heinrich, G., Reduction formalism for dimensionally regulated one-loop N-point integrals, Nucl. Phys., B 572, 361, (2000)
[123] Fleischer, J.; Jegerlehner, F.; Tarasov, OV, Algebraic reduction of one-loop Feynman graph amplitudes, Nucl. Phys., B 566, 423, (2000)
[124] Duplancic, G.; Nizic, B., Reduction method for dimensionally regulated one-loop N-point Feynman integrals, Eur. Phys. J., C 35, 105, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.