×

Supersymmetric Higgs production in gluon fusion. (English) Zbl 1294.81346

Summary: The cross section through gluon fusion is calculated for the production of the light neutral Higgs boson through next-to-leading order QCD within the Minimal Supersymmetric Standard Model. The quark-mediated contributions are taken into account exactly, while for the genuinely supersymmetric terms we use expressions obtained in the limit of large squark, gluino and top quark masses. We present numerical results for the total inclusive cross section as well as for kinematical distributions of the Higgs boson. We also consider the effect of an MSSM-like \(4^{th}\) generation on the total Higgs production cross section.

MSC:

81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
81V05 Strong interaction, including quantum chromodynamics
81U35 Inelastic and multichannel quantum scattering
81T15 Perturbative methods of renormalization applied to problems in quantum field theory

Software:

MATAD; FeynHiggs; HIGLU
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] CDF and D0 collaboration, Combined CDF and D0 Upper Limits on Standard Model Higgs-Boson Production with up to 6.7 fb\^{}{−1}of Data, arXiv:1007.4587 [SPIRES].
[2] Djouadi, A., The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept., 457, 1, (2008)
[3] Djouadi, A., The anatomy of electro-weak symmetry breaking. II the Higgs bosons in the minimal supersymmetric model, Phys. Rept., 459, 1, (2008)
[4] R. Harlander, Higgs production — higher orders and finite top mass effects, proceedings of the XLVth Rencontres de Moriond 2010, La Thuile Italy (2010).
[5] Harlander, R., Higgs production at the large hadron collider: theoretical status, J. Phys., G 35, 033001, (2008)
[6] Tevatron New Phenomena & Higgs Working Group collaboration, D. Benjamin et al., Combined CDF and D0 upper limits on MSSM Higgs boson production in tau-tau final states with up to 2\(.\)2 fb\^{}{−1}, arXiv:1003.3363 [SPIRES].
[7] J. Baglio and A. Djouadi, Revisiting the constraints on the Supersymmetric Higgs sector at the Tevatron, arXiv:1012.2748 [SPIRES].
[8] CDF and D0 collaboration, T. Aaltonen et al., Combined Tevatron upper limit on gg → \(H\) → \(W\)\^{}{+}\(W\)\^{}{−}and constraints on the Higgs boson mass in fourth-generation fermion models, arXiv:1005.3216 [SPIRES].
[9] Georgi, HM; Glashow, SL; Machacek, ME; Nanopoulos, DV, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett., 40, 692, (1978)
[10] Djouadi, A.; Spira, M.; Zerwas, PM, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett., B 264, 440, (1991)
[11] Dawson, S., Radiative corrections to Higgs boson production, Nucl. Phys., B 359, 283, (1991)
[12] Spira, M.; Djouadi, A.; Graudenz, D.; Zerwas, PM, Higgs boson production at the LHC, Nucl. Phys., B 453, 17, (1995)
[13] Harlander, RV; Kilgore, WB, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett., 88, 201801, (2002)
[14] Anastasiou, C.; Melnikov, K., Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys., B 646, 220, (2002)
[15] Ravindran, V.; Smith, J.; Neerven, WL, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys., B 665, 325, (2003)
[16] Marzani, S.; Ball, RD; Duca, V.; Forte, S.; Vicini, A., Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys., B 800, 127, (2008)
[17] Harlander, RV; Ozeren, KJ, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP, 11, 088, (2009)
[18] Pak, A.; Rogal, M.; Steinhauser, M., Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP, 02, 025, (2010)
[19] Harlander, RV; Mantler, H.; Marzani, S.; Ozeren, KJ, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J., C 66, 359, (2010)
[20] Catani, S.; Florian, D.; Grazzini, M.; Nason, P., Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP, 07, 028, (2003)
[21] Idilbi, A.; Ji, X-d; Ma, J-P; Yuan, F., Threshold resummation for Higgs production in effective field theory, Phys. Rev., D 73, 077501, (2006)
[22] Idilbi, A.; Ji, X-d; Yuan, F., Resummation of threshold logarithms in effective field theory for DIS, Drell-Yan and Higgs production, Nucl. Phys., B 753, 42, (2006)
[23] Moch, S.; Vogt, A., Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett., B 631, 48, (2005)
[24] Ravindran, V., Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys., B 752, 173, (2006)
[25] Ahrens, V.; Becher, T.; Neubert, M.; Yang, LL, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J., C 62, 333, (2009)
[26] Aglietti, U.; Bonciani, R.; Degrassi, G.; Vicini, A., Two-loop light fermion contribution to Higgs production and decays, Phys. Lett., B 595, 432, (2004)
[27] Actis, S.; Passarino, G.; Sturm, C.; Uccirati, S., NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett., B 670, 12, (2008)
[28] Anastasiou, C.; Boughezal, R.; Petriello, F., Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP, 04, 003, (2009)
[29] Djouadi, A., Squark effects on Higgs boson production and decay at the LHC, Phys. Lett., B 435, 101, (1998)
[30] Carena, MS; Heinemeyer, S.; Wagner, CEM; Weiglein, G., Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J., C 26, 601, (2003)
[31] Harlander, RV; Steinhauser, M., Hadronic Higgs production and decay in supersymmetry at next-to-leading order, Phys. Lett., B 574, 258, (2003)
[32] Harlander, RV; Steinhauser, M., Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP, 09, 066, (2004)
[33] Harlander, R.; Steinhauser, M., Effects of SUSY-QCD in hadronic Higgs production at next-to-next-to-leading order, Phys. Rev., D 68, 111701, (2003)
[34] Degrassi, G.; Slavich, P., On the NLO QCD corrections to Higgs production and decay in the MSSM, Nucl. Phys., B 805, 267, (2008)
[35] Anastasiou, C.; Beerli, S.; Bucherer, S.; Daleo, A.; Kunszt, Z., Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP, 01, 082, (2007)
[36] Aglietti, U.; Bonciani, R.; Degrassi, G.; Vicini, A., Analytic results for virtual QCD corrections to Higgs production and decay, JHEP, 01, 021, (2007)
[37] Mühlleitner, M.; Spira, M., Higgs boson production via gluon fusion: squark loops at NLO QCD, Nucl. Phys., B 790, 1, (2008)
[38] Degrassi, G.; Slavich, P., NLO QCD bottom corrections to Higgs boson production in the MSSM, JHEP, 11, 044, (2010)
[39] Anastasiou, C.; Beerli, S.; Daleo, A., The two-loop QCD amplitude gg → \(h\), \(H\) in the minimal supersymmetric standard model, Phys. Rev. Lett., 100, 241806, (2008)
[40] A. Pak, M. Steinhauser and N. Zerf, Higgs boson production in gluon fusion to NNLO in the MSSM, arXiv:1012.0639 [SPIRES].
[41] Heinemeyer, S., MSSM Higgs physics at higher orders, Int. J. Mod. Phys., A 21, 2659, (2006)
[42] Allanach, BC; Djouadi, A.; Kneur, JL; Porod, W.; Slavich, P., Precise determination of the neutral Higgs boson masses in the MSSM, JHEP, 09, 044, (2004)
[43] Kant, P.; Harlander, RV; Mihaila, L.; Steinhauser, M., Light MSSM Higgs boson mass to three-loop accuracy, JHEP, 08, 104, (2010)
[44] Harlander, R.; Kant, P., Higgs production and decay: analytic results at next-to-leading order QCD, JHEP, 12, 015, (2005)
[45] http://www-ttp.physik.uni-karlsruhe.de/Progdata/ttp04/ttp04-19/.
[46] F. Hofmann, Influence of the Supersymmetric Bottom Sector on Higgs Production and Decay, Ph.D. Thesis, Wuppertal University, Wuppertal Germany (2009).
[47] Brein, O.; Hollik, W., MSSM Higgs bosons associated with high-\(p\)_{\(T\)} jets at hadron colliders, Phys. Rev., D 68, 095006, (2003)
[48] Field, B.; Dawson, S.; Smith, J., Scalar and pseudoscalar Higgs boson plus one jet production at the LHC and tevatron, Phys. Rev., D 69, 074013, (2004)
[49] Brein, O.; Hollik, W., Distributions for MSSM Higgs boson + jet production at hadron colliders, Phys. Rev., D 76, 035002, (2007)
[50] Passarino, G.; Veltman, MJG, One loop corrections for \(e\)\^{}{+}\(e\)\^{}{−} annihilation into \(μ\)\^{}{+}\(μ\)\^{}{−} in the Weinberg model, Nucl. Phys., B 160, 151, (1979)
[51] Ellis, RK; Hinchliffe, I.; Soldate, M.; Bij, JJ, Higgs decay to \(τ\)\^{}{+}\(τ\)\^{}{−}: A possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys., B 297, 221, (1988)
[52] Baur, U.; Glover, EWN, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys., B 339, 38, (1990)
[53] Keung, W-Y; Petriello, FJ, Electroweak and finite quark-mass effects on the Higgs boson transverse momentum distribution, Phys. Rev., D 80, 013007, (2009)
[54] Bonciani, R.; Degrassi, G.; Vicini, A., Scalar particle contribution to Higgs production via gluon fusion at NLO, JHEP, 11, 095, (2007)
[55] Harlander, RV; Ozeren, KJ, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections, Phys. Lett., B 679, 467, (2009)
[56] Pak, A.; Rogal, M.; Steinhauser, M., Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett., B 679, 473, (2009)
[57] V.A. Smirnov, Springer Tracts in Modern Physics. Vol. 177: Applied asymptotic expansions in momenta and masses, Springer, Heidelberg Germany (2002) [ISBN:3-540-42334-6]
[58] Steinhauser, M., MATAD: A program package for the computation of massive tadpoles, Comput. Phys. Commun., 134, 335, (2001)
[59] Harlander, R.; Kant, P.; Mihaila, L.; Steinhauser, M., Dimensional reduction applied to QCD at three loops, JHEP, 09, 053, (2006)
[60] Harlander, RV; Jones, DRT; Kant, P.; Mihaila, L.; Steinhauser, M., Four-loop β-function and mass anomalous dimension in dimensional reduction, JHEP, 12, 024, (2006)
[61] Harlander, RV; Mihaila, L.; Steinhauser, M., The SUSY-QCD β-function to three loops, Eur. Phys. J., C 63, 383, (2009)
[62] Brignole, A.; Degrassi, G.; Slavich, P.; Zwirner, F., On the two-loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys., B 643, 79, (2002)
[63] Harlander, R.; Mihaila, L.; Steinhauser, M., Two-loop matching coefficients for the strong coupling in the MSSM, Phys. Rev., D 72, 095009, (2005)
[64] Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G., High-precision predictions for the MSSM Higgs sector at \( \mathcal{O}\left( {{α_b}{α_s}} \right) \), Eur. Phys. J., C 39, 465, (2005)
[65] Allanach, BC; etal., The snowmass points and slopes: benchmarks for SUSY searches, Eur. Phys. J., C 25, 113, (2002)
[66] Carena, MS; Heinemeyer, S.; Wagner, CEM; Weiglein, G., MSSM Higgs boson searches at the tevatron and the LHC: impact of different benchmark scenarios, Eur. Phys. J., C 45, 797, (2006)
[67] Frank, M.; etal., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP, 02, 047, (2007)
[68] Degrassi, G.; Heinemeyer, S.; Hollik, W.; Slavich, P.; Weiglein, G., Towards high-precision predictions for the MSSM Higgs sector, Eur. Phys. J., C 28, 133, (2003)
[69] Heinemeyer, S.; Hollik, W.; Weiglein, G., The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J., C 9, 343, (1999)
[70] Heinemeyer, S.; Hollik, W.; Weiglein, G., Feynhiggs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM, Comput. Phys. Commun., 124, 76, (2000)
[71] Martin, SP, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev., D 75, 055005, (2007)
[72] Harlander, RV; Kant, P.; Mihaila, L.; Steinhauser, M., Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett., 100, 191602, (2008)
[73] Florian, D.; Grazzini, M., Higgs production through gluon fusion: updated cross sections at the tevatron and the LHC, Phys. Lett., B 674, 291, (2009)
[74] J. Baglio and A. Djouadi, Higgs production at the LHC, arXiv:1012.0530 [SPIRES].
[75] Martin, AD; Stirling, WJ; Thorne, RS; Watt, G., Parton distributions for the LHC, Eur. Phys. J., C 63, 189, (2009)
[76] Carena, MS; Garcia, D.; Nierste, U.; Wagner, CEM, Effective Lagrangian for the \( \bar{t}b{H^{+} } \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys., B 577, 88, (2000)
[77] Carena, MS; Garcia, D.; Nierste, U.; Wagner, CEM, \(b\) → and supersymmetry with large tan β, Phys. Lett., B 499, 141, (2001)
[78] M. Spira, HIGLU: A Program for the Calculation of the Total Higgs Production Cross Section at Hadron Colliders via Gluon Fusion including QCD Corrections, hep-ph/9510347 [SPIRES].
[79] Langenegger, U.; Spira, M.; Starodumov, A.; Trueb, P., SM and MSSM Higgs boson production: spectra at large transverse momentum, JHEP, 06, 035, (2006)
[80] Kribs, GD; Plehn, T.; Spannowsky, M.; Tait, TMP, Four generations and Higgs physics, Phys. Rev., D 76, 075016, (2007)
[81] Anastasiou, C.; Boughezal, R.; Furlan, E., The NNLO gluon fusion Higgs production cross-section with many heavy quarks, JHEP, 06, 101, (2010)
[82] Q. Li, M. Spira, J. Gao and C.S. Li, Higgs Boson Production via Gluon Fusion in the Standard Model with four Generations, arXiv:1011.4484 [SPIRES].
[83] Fok, R.; Kribs, GD, Four generations, the electroweak phase transition and supersymmetry, Phys. Rev., D 78, 075023, (2008)
[84] Litsey, S.; Sher, M., Higgs masses in the four generation MSSM, Phys. Rev., D 80, 057701, (2009)
[85] Dawson, S.; Jaiswal, P., Four generations, Higgs physics and the MSSM, Phys. Rev., D 82, 073017, (2010)
[86] CDF collaboration; Aaltonen, T.; etal., Search for new bottomlike quark pair decays \( Q\bar{Q} → \left( {t{W^∓ }} \right)\left( {\bar{t}{W^± }} \right) \) in same-charge dilepton events, Phys. Rev. Lett., 104, 091801, (2010)
[87] CDF collaboration, D. Cox, Search for a heavy top t′Wq in top events, arXiv:0910.3279 [SPIRES].
[88] http://particle.uni-wuppertal.de/harlander/research/data/gghbsusy.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.