A new proof of the existence of Kähler-Einstein metrics on K3. II. (English) Zbl 0634.14026

This is the continuation of the study of Kähler Einstein metrics on \(K_ 3\) surfaces. Here the author shows that the technique used in the first part of his investigation indeed produced numerous such metrics on a \(K_ 3\) surface. Furthermore, the author points out the difference between this metric and the one constructed by T. Eguchi and A. J. Hanson [Phys. Lett. B 74, No.3, 249-251 (1978)].
Reviewer: Vo Van Tan


14J28 \(K3\) surfaces and Enriques surfaces
53C55 Global differential geometry of Hermitian and Kählerian manifolds
Full Text: DOI EuDML


[1] [A1] Atiyah, M.: On analytic surfaces with double points. Proc. R. Soc. Lond. Ser. A247, 237-244 (1958) · Zbl 0135.21301
[2] [AHS] Atiyah, M., Hitchin, N., Singer, I.: Self-duality in four dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A362, 425-461 (1978) · Zbl 0389.53011
[3] [B] Banica, C., Putinar, M., Schumacher, G.: Globalen Ext in Deformationen kompakter komplexer Räume. Math. Ann.250, 135-155 (1980) · Zbl 0438.32007
[4] [B-B] Beauville, A., Bourguignon, J.-P.: Géométrie des surfacesK3: modules et périodes. Astérisque126 (1985)
[5] [B-W] Burns, D., Wahl, J.: Local contributions to global deformations of surfaces. Invent. Math.26, 67-88 (1974) · Zbl 0288.14010
[6] [E-H] Eguchi T., Hanson, A.: Asymptotically flat solutions, to Euclidean, gravity. Phys. Lett. B74, 249-251 (1978)
[7] [H1] Hitchin, N.: Polygons and gravitons. Math. Proc. Camb. Philos. Soc.85, 465-476 (1979) · Zbl 0405.53016
[8] [H3] Hitchin, N.: Twistor, construction of Einstein metrics. In: Wilmore, T., Hitchin, N. (eds.), Global Riemannian geometry. New York: Halsted Press 1984
[9] [H-G] Hawking, S., Gibbons, G.: Gravitational multi-instantons. Phys. Lett. B78, 430-432 (1978)
[10] [Pg] Page, D.: A physical picture of theK3 gravitational instanton Phys. Lett. B80, 55-57 (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.