Analysis on Lie groups. (English) Zbl 0634.22008

This paper deals mainly with inequalities of Sobolev type, estimates for the kernel of the operator of heat conduction as \(t\to 0\) and as \(t\to \infty\), and their interrelations. Let G be a connected real Lie group and \(H=\{X_ 1,...,X_ k\}\) be left-invariant vector fields on G that, together with their brackets, generate the Lie algebra of G. Define for \(f\in C_ 0^{\infty}(G):\) \(D(f)=\int_{G}| \nabla f|^ 2dx\), \(| \nabla f|^ 2=\sum | X_ jf|^ 2\), where dx is right Haar measure. D induces a semi-group \(T_ t=\exp (-t\Delta)\), \(\Delta =-\sum^{k}_{1}X_ j^ 2\), with symmetric kernel \(p_ t(x,y)\), which the author re-scales when necessary to \(r_ t(x,y)\) through the “modular function” that relates left and right Haar measure.
There is a fundamental alternative for the Lie groups in question: If \(B_ t\) denotes the ball of radius t in the Carathéodory metric defined through the vector fields H, then the function \(\gamma (t)=left\) Haar measure of \(B_ t\) satisfies either \(\gamma (t)\approx e^ t\) (t\(\to \infty)\) or there exists \(a\geq 0\) such that \(\gamma (t)\approx t^ a\) (t\(\to \infty)\) [Y. Guivarc’h, Bull. Soc. Math. Fr. 101(1973), 333-379 (1974; Zbl 0294.43003)]. An inequality of Sobolev type is, with Lebesgue norms, \((Sob_ n):\| f\|_{n/n-1}\leq Const.\| \nabla f\|_ 1\), \(\forall f\in C_ 0^{\infty}(G)\). The author relates such inequalities to estimates \(r_ t(e,e)=O(t^{-a/2})\) (t\(\to \infty)\), \(e=identity\) of G, as well as to lower bounds for all \(t\geq 0:\gamma (t)\geq Const.\cdot t^ a\), \(\exists a\geq 0\). Necessary and sufficient conditions that \((Sob_ n)\) should hold are obtained, conditions that depend upon the growth of \(\gamma\) (t)\(\to \infty.\)
The proofs of these results involve a wealth of ideas and techniques and constitute an extraordinary tour de force.
Reviewer: E.J.Akutowicz


22E30 Analysis on real and complex Lie groups
58J65 Diffusion processes and stochastic analysis on manifolds
35K05 Heat equation
58J35 Heat and other parabolic equation methods for PDEs on manifolds


Zbl 0294.43003
Full Text: DOI


[1] Carathéodory, C, Math. ann., 67, 355-386, (1909)
[2] Bony, J.M, Ann. inst. Fourier (Grenoble), 277, (1969)
[3] Deny, J, Potential theory, (), dal 2 al 10 Luglio
[4] Fukushima, M, Dirichlet forms and Markov processes, (1980), North-Holland/Kodansha Amsterdam · Zbl 0422.31007
[5] McKean, H.P, Stochastic integrals, (1969), Academic Press Orlando, FL · Zbl 0191.46603
[6] Yosida, K, Functional analysis, (1978), Springer-Verlag New York/Berlin · Zbl 0152.32102
[7] Dynkin, E.B, Markov processes, (1965), Springer-Verlag Berlin · Zbl 0132.37901
[8] Sanches-Calle, A, Invent. math., 78, 143-160, (1984)
[9] Rothschild, L.P; Stein, E.M, Acta math., 137, 247-320, (1977)
[10] Hörmander, L; Melin, A, Ark. mat., 16, 83-88, (1978)
[11] Nagel, A; Stein, E.M; Wainger, S, Acta math., 55, 103-147, (1985)
[12] Varopoulos, N.Th, J. funct. anal., 63, 215-239, (1985)
[13] Varopoulos, N.Th, J. funct. anal., 63, 240-260, (1985)
[14] Varopoulos, N.Th, C.R. acad. sci. Paris Sér. I math., 300, 617-620, (1985)
[15] Varopoulos, N.Th, C. R. acad. sci. Paris Sér. I math., 301, 865, (1985)
[16] Davies, E.B, One parameter semigroups, (1980), Academic Press Orlando, FL · Zbl 0457.47030
[17] Gromov, M, Inst. hautes études sci. publ. math., 53, (1981)
[18] Guivarc’h, Y, Bull. soc. math. France, 101, 333-379, (1973)
[19] Jenkins, J.W, J. funct. anal., 12, 113-127, (1973)
[20] {\scS. W. Drury}, Personal communication, spring 1984.
[21] Varopoulos, N.Th, J. funct. anal., 66, 406-431, (1986)
[22] Varopoulos, N.Th, Bull. sci. math. (2), 109, 113-119, (1985)
[23] Benedek, A; Panzone, R, Duke math. J., 28, 301, (1961)
[24] Hörmander, L, Acta math., 119, 147-171, (1967)
[25] Varopoulos, N.Th, (), Notes taken by L. Saloff-Coste and T. Coulhon
[26] {\scV. S. Varadarajan}, “Lie Groups, Lie Algebras and Their Representations,” Prentice-Hall, Englewood Cliffs, N.J. · Zbl 0371.22001
[27] {\scS. Helgason}, “Differential Geometry and Symmetric Spaces,” Academic Press, Orlando, FL. · Zbl 0122.39901
[28] Davies, E.B, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. math., 109, 319-333, (1976) · Zbl 0659.35009
[29] Hochschild, G, The structure of Lie groups, (1965), Holden-Day San Francisco · Zbl 0131.02702
[30] Varopoulos, N.Th, C.R. acad. sci. Paris Sér. I. math., 299, 651-654, (1984)
[31] Federer, H, Geometric measure theory, (1969), Springer-Verlag New York/Berlin · Zbl 0176.00801
[32] {\scM. W. Hirsch}, “Differential Topology,” Springer-Verlag, Berlin. · Zbl 0356.57001
[33] Stein, E.M, Singular integrals and differentiability of functions, (1971), Princeton Univ. Press Princeton, NJ
[34] Chevalley, C, Théorie des groupes de Lie. III. théorèmes généraux sur LES algébres de Lie, (1955), Hermann Paris
[35] Auslander, L; Green, L.W, Amer. J. math., 88, 43-60, (1966)
[36] Guivarc’h, Y, Loi des grands nombres et rayon spectral d’une marche aléatoire sur ungroupe de Lie, Astérisque, 74, 47-98, (1979) · Zbl 0448.60007
[37] {\scG. Hochschild}, “Introduction to Affine Algebraic Groups,” Holden-Day, San Francisco. · Zbl 0221.20055
[38] Hunt, R.A, Enseign. math., 12, 249-275, (1966)
[39] Varopoulos, N.Th, C.R. acad. sci. Paris Sér. I math., (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.