×

Special functions in Clifford analysis and axial symmetry. (English) Zbl 0634.30042

In our previous paper [Rend. Circ. Mat. Palermo, II Ser. Suppl. 6, 259- 269 (1984; Zbl 0564.30036)], we proved a general Laurent expansion for monogenic functions in symmetric domains of \({\mathbb{R}}^{m+1}\), depending on the kind of symmetry involved. In this paper we consider axial symmetric domains and we apply our results in order to introduce new speciat \({\mathcal H}\) be a principal series of G. The Gaschütz-module A of G is defined as the direct product of all splitting p-chief factors of \({\mathcal H}\). A is in a natural manner a G-(right)-module.
There exists a “canonical” crossed homomorphism \(\psi\) of G onto A; ker \(\psi\) \(=D\) is a p-prefrattini-group of G (i.e. the intersection of a set of complements, one for each complemented p-chief-factor of \({\mathcal H})\). The group ring \({\mathbb{F}}_ p[A]\) is made a G-module by \(a\circ g:=a^ g\psi (g)\), \(a\in A\), \(g\in G\) where \(a^ g\) indicates the natural operation of G on A. This module is called \({\mathbb{F}}_ p[A]_{\psi}.\)
Then the following holds: a) There is a G epimorphism \({\hat \psi}\): \(P_ 1\to {\mathbb{F}}_ p[A]_{\psi}\), ker \({\hat \psi}\cong P_ 1(D)J_ D\otimes_ D{\mathbb{F}}_ p[G]\), where \(J_ D\) is the radical of \({\mathbb{F}}_ p[D]\). b) \({\hat \psi}\) maps \(J_ G\) onto \(J_{A,\psi}\) the augmentation ideal of \({\mathbb{F}}_ p[A]_{\psi}\). c) The mapping \(\pi\) : \(J_{a,\psi}\to A\), given by a-1\(\to^{\pi}a\) is a G-epimorphism. d) \(\tau =\pi\). \({\hat \psi}\) maps \(P_ 1J_ G\) onto A and ker \(\tau\) \(=P_ 1J^ 2_ G.\)
Gaschütz’s theorem: \(P_ 1J_ G/P_ 1J^ 2_ G\cong A\) is a consequence. Moreover, because of the fact that the composition factors of \({\mathbb{F}}_ p[A]_{\psi}\) coincide with the composition factors of the natural G-module \({\mathbb{F}}_ p[A]\) all these are composition factors of \(P_ 1\). As a further application one gets a simple proof of the theorem of Green and Hill. More information on \(P_ 1(G)\) is given.
Reviewer: A.Brandis

MSC:

30G35 Functions of hypercomplex variables and generalized variables
32A30 Other generalizations of function theory of one complex variable
30A05 Monogenic and polygenic functions of one complex variable
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

Citations:

Zbl 0564.30036
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brackx, F.; Delanghe, R.; Sommen, F., Clifford Analysis, (Research Notes in Mathematics No. 76 (1982), Pitman: Pitman London) · Zbl 0529.30001
[2] Delanghe, R.; Brackx, F., Hypercomplex function theory and Hilbert modules with reproducing kernel, (Proc. London Math. Soc., 37 (1978)), 545-576 · Zbl 0392.46019
[3] Fueter, R., Analytische Funktionen einer Quaternionenvariablen, Comment. Math. Helv., 4, 9-20 (1932) · JFM 58.0144.05
[4] Hochstadt, H., The functions of mathematical physics, (Pure and Applied Mathematics, Vol. 23 (1971), Wiley-Interscience: Wiley-Interscience New York) · Zbl 0217.39501
[5] Lounesto, P.; Bergh, P., Axially symmetric vector fields and their complex potentials, Complex Variables Theory Appl., 2, 139-150 (1983) · Zbl 0562.30036
[6] Riesz, M., L’intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math., 81, 1-223 (1949) · Zbl 0033.27601
[7] Ryan, J., Complexified Clifford analysis, Complex Variables Theory Appl., 1, 119-149 (1982) · Zbl 0503.30039
[8] Sommen, F., Spherical monogenic functions and analytic functionals on the unit sphere, Tokyo J. Math., 4, 427-456 (1981) · Zbl 0481.30040
[9] Sommen, F., Microfunctions with values in a Clifford algebra I, Rend. Circ. Mat. Palermo, 3, 263-291 (1984) · Zbl 0546.30039
[10] Sommen, F., Plane elliptic systems and monogenic functions in symmetric domains, Rend. Circ. Mat. Palermo, 6, 259-269 (1984) · Zbl 0564.30036
[11] Sommen, F., Microfunctions with values in a Clifford algebra II, Sci. Papers College Arts Sci. Univ. Tokyo, 36, 15-37 (1986) · Zbl 0649.30040
[12] Soucek, V., Complex quaternionic analysis applied to spin −\(12\) massless fields, Complex Variables Theory Appl., 1, 327-346 (1983) · Zbl 0525.30039
[13] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0207.13501
[14] Sudbery, A., Quaternionic analysis, (Math. Proc. Cambridge Philos. Soc., 85 (1979)), 199-225 · Zbl 0399.30038
[15] Vekua, I. N., Generalized Analytic Functions (1962), Pergamon: Pergamon Oxford · Zbl 0127.03505
[16] Vilenkin, N. J., Special functions and the theory of group representations, Trans. Math. Monographs Amer. Math. Soc., 22 (1968) · Zbl 0172.18404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.