Tatarinov, S. V.; Moklyachuk, M. P. On minimax estimation of linear transforms of random fields with values in Hilbert space. (English. Russian original) Zbl 0634.60049 Theory Probab. Math. Stat. 35, 127-136 (1987); translation from Teor. Veroyatn. Mat. Stat. 35, 111-118 (1986). Let \(\xi\) (m,n) be a homogeneous random field defined on the integer lattice \(Z^ 2\) and with values in a Hilbert space. The problem of minimax estimation of a linear transform \[ A\xi =\sum^{\infty}_{m=0}\sum^{\infty}_{n=0}<\xi (m,n),a(m,n)> \] from observations of the field at the points of the set \(Z^ 2\setminus Z^ 2_+\) \((Z^ 2_+=\{(m,n):\) \(m\geq 0\), \(n\geq 0\}\) are considered. Reviewer: M.Yadrenko MSC: 60G60 Random fields 62G05 Nonparametric estimation Keywords:random field; minimax estimation of a linear transform PDFBibTeX XMLCite \textit{S. V. Tatarinov} and \textit{M. P. Moklyachuk}, Theory Probab. Math. Stat. 35, 127--136 (1987; Zbl 0634.60049); translation from Teor. Veroyatn. Mat. Stat. 35, 111--118 (1986)